Karnataka State Women's University, Vijayapur

M.Sc. Botany Choice - Based Credit System (CBCS) Syllabus

CORE SUBJECT: BOTANY – [Post Graduate]

Course code	Course name		С	redit	ts	Marks								Domonia		
						C1			C2			C3			Total	Remark
		L	Т	Р	Total	L	Τ	Р	L	Τ	P	L	Т	Р		
Semester I																
HCT-1.1	Phycology, Mycology, Bacteria and Virus	04			04	15			15			70			100	
HCT-1.2	Bryophytes and Pteridophytes	04			04	15			15			70			100	
HCT-1.3	Gymnosperms and Paleobotany	04			04	15			15			70			100	
SCT-1.4	Biostatistics and Bioinformatics	04			04	15			15			70			100	
HCP-1.5	Phycology, Mycology, Bacteria and Virus			02	02			07			07			36	50	
HCP-1.6	Bryophytes and Pteridophytes			02	02			07			07			36	50	
HCP-1.7	Gymnosperms and Paleobotany			02	02			07			07			36	50	
SCP-1.8	Biostatistics and Bioinformatics			02	02			07			07			36	50	
	Total	16		08	24	60		28	60		28	280		144	600	
Semester II																
HCT-2.1	Ecology and Phytogeography	04			04	15			15			70			100	
HCT-2.2	Cell and Molecular Biology	04			04	15			15			70			100	
HCT-2.3	Genetics and Evolution	04			04	15			15			70			100	
SCT-2.4	Methods in Plant Science Genetic engineering (optional)	04			04	15			15			70			100	
HCP-2.5	Ecology and Phytogeography			02	02			07			07			36	50	
HCP-2.6	Cell and Molecular Biology			02	02			07			07			36	50	
HCP-2.7	Genetics and Evolution			02	02			07			07			36	50	
SCP-2.8	Methods in Plant Science			02	02			07			07			36	50	
OE-2.9	Neutraceuticals	04				15			15			70			100	
	Total	20		08	24	75		28	75		28	350		144	700	
Semester III																

HCT-3.1	Systematic Botany of Angiosperms	04			04	15		15		70		100	
HCT-3.2	Plant Anatomy and Embryology	04			04	15		15		70		100	
HCT-3.3	Medicinal plants and Phytochemistry	04			04	15		15		70		100	
SCT-3.4	Economic Botany and Conservation of Biodiversity	04			04	15		15		70		100	
HCP-3.5	Systematic Botany of Angiosperms		0	2	02		07		07		36	50	
HCP-3.6	Plant Anatomy and Embryology		0	2	02		07		07		36	50	
HCP-3.7	Medicinal plants and Phytochemistry		0	2	02		07		07		36	50	
SCP-3.8	Economic Botany and Conservation of Biodiversity		0	2	02		07		07		36	50	
OE-3.9	Plant Propagation Techniques	04				15		15		70		100	
	Total	20	0	8	24	75	28	75	28	350	144	700	
Semester IV													
HCT-4.1	Plant Physiology	04			04	15		15		70		100	
HCT-4.2	Plant Breeding	04			04	15		15		70		100	
SCT-4.3	Plant Biotechnology	04			04	15		15		70		100	
HCP-4.4	Plant Physiology		0	2	02		07		07		36	50	
HCP-4.5	Plant Breeding		0	2	02		07		07		36	50	
SCP-4.6	Plant Biotechnology		0	2	02		07		07		36	50	
HCPW-4.7	Project work		1	0	10						150	150	
	Total	12	1	6	28	45	21	45	21	210	258	600	
	Programme total											2600	

L- Lecture, T- Tutorial, P- Practical.

HCT- Hard Core Theory, SCT- Soft Core Theory, OE- Open Elective, HCP- Hard Core Practical, SCP- Soft Core Practical.

HCPW- Hard Core Project Work/Dissertation.

The project evaluation marks 150 are a total of 100 marks for dissertation, 25 marks for presentation and 25 marks for viva.

SEMESTER I

HCT-1.1	I: PHYCOLOGY, MYCOLOGY, BACTERIA AND VIRUSES	52 Hours
 Course objectives: To understand the occurrence, basic structure, organization and reproduction of algae, fungi, lichen, viruses and bacteria. To understand the reproduction and economic importance of algae, fungi, lichens, viruses and bacteria. 		
Possible out By studying importance o life.	comes: this course the students will learn about general account and economic f algae, fungi, lichens, viruses and bacteria with their impact on human	
Programmes	specific outcomes:	
UnderIdentiDevel	rstand the structure, function of algae, fungi, viruses and bacteria. fy algae and fungi in their natural habitat on the basis of characters. lop the cultures of algae and fungi.	
Unit-I	Phycology: Introduction and History, with special reference to Indian	8hrs
	work. Distribution and important systems of classification in Algae.	
	Comparative account of Algal pigments. Structure and function of	
	cell wall, flagella, food reserves, pyrinoids, eye spot and their importance in classification.	
Unit-II	Thallus organization, reproduction and life-cycle of the following:	12hrs
	Cyanophyta, Chlorophyta, Xanthophyta, Bacillariophyta, Pheophyta	
	and Rhodophyta.	
Unit-III	Economic importance of Algae: Algae as food and medicine, Algal	2hrs
	blooms and toxic Algae.	
Unit-IV	Mycology: introduction, diversity, general characters and	12hrs
	classification of Fungi. (As per Alexopolous and Mims).	
	Morphology, ultra-structure of fungal cell. Reproduction and life	
	cycle in Myxomycotina, Mastigomycotina, Zygomycotina,	
	Ascomycotina, Basidiomycotina and Dueteromycontina.	
	Heterothallism and Parasexuality.	
Unit-V	Detailed account of economic importance of Mushroom: Cultivation,	6hrs
	edible and poisonous mushrooms fungi.	

Unit-VI	Lichens: General account and systematic of Lichens. Structure of	4hrs
	thallus, reproduction and ecological significance.	
Unit VII	Viruses and Bacteria: Viruses: General account of plant and animal	8hrs
	viruses. Transmission of plant viruses. Structure and reproduction in	
	TMV and T4 phage. Prions and viroids.Bacteria: Ultrastructure,	
	classification, Bergey's Manual Trust, reproduction, nutrition and	
	economic importance.	

- 1. AlexopoulosCJ (1963). Introduction to Mycology.
- 2. Chapman VJ and Chapman DJ(1973) The algae.
- 3. Biligrami K.S. and Saha L.S. (1992). A text book of Algae.
- 4. Jackson D.F. Algae and Man.
- 5. Burnett, J.H. Fundamentals of Mycology.
- 6. Aneja K. R. Experiments in Microbiology, Plant Pathology and Biotechnology 2003 New Age International (P) Limited, Publishers, New Delhi.
- 7. E Rosenberg, Microbial biology.
- 8. M. Pelezar, DR Reid and ECS Chan, Microbiology
- 9. R.C.Dubey and Maheshwari.D.K.2002.A text book of Microbiology.S.C Chand and Co. Ltd.Ramnagar,NewDehli.
- 10. Sullia S.B and Shantaram.S.1998. General Microbiology. Oxford and IBH Publishing Co. Pvt. Ltd. New Dehli
- 11. Sharma O. P. and Shivani Dixit 2001 Experiments and Techniques in Microbiology, Plant Pathology, Ecology and Soil Science, Pollution, Biochemistry and Plant physiology PragatiPrakashenmeerut.

	HCT-1.2: BRYOPHYTES AND PTERIDOPHYTES	52 Hours		
Course object • To v Pterid • This of and r import	ctives: inderstand the classification and evolution of Bryophytes and lophytes. course is intended to provide the basic understanding of morphology reproduction in Bryophytes and Pteridophytes and their Economic tance.			
Possible out	comes:			
After studying this paper students will be able to classify Bryophytes and Pteridophytes. They will also be able to describe heterospory, origin of seed habit and evolutionary trends in stele and spore producing organs. Besides above, they will also be able to understand the economic importance and experimental works in Bryophytes and Pteridophytes				
Programmes	specific outcomes:			
 The state select Under Under 	tudents will learn about the structure and reproduction of certain ed species of Bryophytes and Pteridophytes. rstand the structure and life cycle of different bryophytes. rstand the structure and life cycle of different pteridophytes.			
Unit-I	Bryophytes: Introduction, distribution origin, evolution and classification, economic and ecological importance.	8hrs		
Unit-II	Range in thallus structure, anatomy and evolutionary tendencies in sporophytes (Progressive sterilization of sporogenous tissue)	8hrs		
IInit-III	Reproduction, life history, inter-relationships and affinities of various	10hrs		
Cint-III	groups (Marchantiales, Jungermaniales, Anthocerotales, Sphagnales	101113		
	and Polytrichales) of Bryophytes.			
Unit-IV	Pteridophytes: Introduction, general characters, origin, evolution and classification.	8hrs		
Unit-V	 Psilopsida: Comparative account of Psilophytales and Psilotales. Lycopsida: Range in vegetative and reproductive structures in Lycopodials and Isoetales. Heterospory and seed habit. Sphenopsida: Range in vegetative and reproductive structure Pteropsida: Range in vegetative and reproductive structure, sori and sporangia in ferns. 	12hrs		
Unit-VI	Stelar and soral evolution, economic importance and experimental work in Ptridophytes.	6hrs		

- 1. Puri, P. 1980. Bryophytes. Atma Ram and Sons, Delhi.
- 2. Parihar, N. S. 1996. Bryophytes. Central Book Depot, Allahabad.
- 3. Parihar, N. S. 1996. Biology and Morphology of Pteridophytes. Central Book Depot, Allahabad.
- 4. Sporne, K. R. 1991. The Morphology of Pteridophytes. B.I. Publishing Pvt. Ltd., Bombay
- 5. Manju C Nair, Rajesh K.P. and Madhusudanan P.V. Bryophytes of Waynad in Western Ghats. Malabar Natural History Society, Kozikode.

	HCT-1.3: GYMNOSPERMS AND PALEOBOTANY	52 Hours		
 Course objectives: This course is intended to provide the basic understanding of morphology and reproduction in Gymnosperms and their Economic importance. It also give details of Geological time scale and an understanding of the past history of the biosphere and evolution of plants through fossils. 				
Possible out	comes:			
After successfully completing this course, the student will be able to recognize morphological, anatomical and reproductive characteristics of Gymnosperms and the extinct Bryophytes, Pteridophytes and Gymnosperms. The student will understand the evolutionary history of plant kingdom.				
Programmes	specific outcomes:			
 The select Learn Study Study Conif 	students will learn about the structure and reproduction of certain ed species of Gymnosperms. few representatives of fossil forms. the different types of fossils of extinct plants/ flora. the evolutionary affinity between Cordiatales, Cycadales, and ferales.			
Unit-I	Gymnosperms-Introduction Distribution, General characters, Origin,	6hrs		
	Evolution and Classification of Gymnosperms.			
Unit-II	Comparative account of habit, anatomy and reproduction of	20hrs		
	Cycadales: Cycas and Zamia.			
	Coniferales: Pinus, Araucaria, Thuja.			
	Gnetales: Gnetum, Ephedra and Welwitschia			
	Ginkgoales: Ginkgo			
Unit-III	Economic importance of Gymnosperms.	4hrs		
	Experimental works in Gymnosperms			
Unit-IV	Paleobotany - Objectives, Nomenclature and Geological time scale	4hrs		
Unit-V	Fossilization and types of fossils, techniques for fossil study, factors	6hrs		
	affecting fossilization.			
Unit-VI	Study of morphology, anatomy and evolutionary trends of following	12hrs		
	group of fossil plants: Psilophytales, Lepidodendrales, Calmitales,			
	Filicales, Coenopteridales, Pteridospermales, Bennettitales,			
	Pentoxylales, Cordiatales, Cycadales, Coniferales.			

- 1. Bhatnagar, S.P. and Moitra, A. 1996. Gymnosperms. New Age International Pvt. Ltd., New Delhi.
- 2. Coulter and Chamberlin, J. M. 1978. Morphology of Gymnosperms.
- 3. Dutta, S.C. 1973. An introduction to Gymnosperms.
- 4. Sporne, K. R. 1967, Morphology of Gymnosperms.
- 5. Stewart W. N. and Rathwell G.W. 1993. Palaeobotany and Evolution of Plants.
- 6. Shila A. C. and Mishra S. D. 1975. Essentials of Palaeobotany.

:	SCT-1.4: BIOSTATISTICS AND BIOINFORMATICS	52 hrs
Course object • To st biolog • To study to hel	ctives: udy about basics of statistics and utilization of statistical method in gy. udy about modern tools of bioinformatics an inter-disciplinary subject p the biologists in research perspectives.	
Possible out	comes:	
The course w of biological about modern of databases	will give knowledge about data collection, processing and interpretation samples through statistical methods. The course will give knowledge in tools of bioinformatics. Students will learn necessary skills in the use and online tools related to biological data.	
Programmes	specific outcomes:	
 The s applic Under Learn datam Be en technic In bio visual 	tudents will know the basic principles of biostatistics and computer cations inbiology. rstand the fundamental concepts ofbiostatistics. about the computer and imbibecomputer skills for biological nanagement and graphical presentation. lightened about the need for computerapplications, programs and iques forbiology. informatics they will gain deepunderstanding of using computer to lize, explore and model sequence analysis.	
Unit-I	Biostatistics -Introduction and scope of Biostatistics. Basic concepts	4hrs
	of Biostatistics: Variables, constants, observation, data, population.	
Unit-II	Types and collection of data: Sampling, primary data, Secondary data. Presentation of data:Line diagram, bar diagram, pie diagram, graphic presentation of data.	4hrs
Unit-III	Measurement of central tendency: Mean, Median, Mode. Measures of	8hrs
	dispersion: Range, Quartile deviation, Mean deviation, Standard deviation, Standard error, Coefficient of variation.	
Unit-IV	Probability and Probability distribution: Binomial, passion and	8hrs
	normal distribution.	
	Testing of Hypothesis: Null hypothesis, alternative hypothesis, z test,	
	t test and chi-square test.	
Unit-V	Correlation and regression: Scatter diagram, simple linear regression	4hrs
	and nonlinear regression, correlation and correlation coefficient and	
	application. One way and two way analysis of variance and multivariate analysis of variance.	
	,	

Unit-I	Computer application: Knowledge of computer systems, hardware	8 hrs
	and software, CPU and other peripheral devices, software packages,	
	programming language, scientific application of packages.	
Unit-II	Internet: The World Wide Web and local area network (LAN), wide	8hrs
	area network (WAN). Information retrieval, communication using	
	internet, web data base directories, search engine.	
Unit-III	Biological Databases, Bioinformatics tools, Sequence Alignment	8hrs
	tool, Database Searching (BLAST, FASTA), Comparative genomics,	
	Structural and Functional genomics in brief.	

HCP-1.5: PHYCOLOGY, MYCOLOGY, BACTERIA AND VIRUSES				
Phycology				
	Cynophyta: Microcystis,			
	Spirulina, Scytonema and Oscillatoria			
	Chlorophyta: Chlymydomonas, Volvox, PediastrumScenedesmus, Hydrodictyon			
	Diatoms : Pinnate and Centric – Synendra, Pinnuria, Navicula&Cyclotella			
	Xanthophyta : <i>Botrydium</i>			
	Phaeophtae : Dictyota and Ectocarpus			
	Rhodophyta: Polysiphonia and Gracillaria			
	Economic important product : Agar-Agar, Spirulina tablets			
Mycology				
	Phycomycetes : Mucor, Phytophthora, Saprolegnia			
	Ascomycetes : Saccharomyces, Xylaria, Aspergillus, Peziza			
	Basidiomycetes : Polyporus, Lycoperdon, Ustilago, Agaricus			
	Duetoromycetes : Alternaria, Cercospora, Cladosporium			
Viruses and	Bacteria			
	Staining of Bacteria (Positive, Negative& Gram's staining)			
	Demonstration of Bacterial motility by hanging drop method			
	Test for coliform Bacteria- Streak plate method			
	Viral disease of Tobacco, Papaya&Bhendi.			

HCP-1.6: BRYOPHYTES AND PTERIDOPHYTES

Bryophytes: Study of vegetative habit, Anatomy and Reproductive Structures of the following taxa:

Targionia, Marchantia, Porella, Pellia Anthoceros, Notothallus Sphagnum, Polytrichum&Bryum

Comparative structure of sporophytes of Bryophytes

Pteridophytes: External morphology, Anatomy & reproductive structures of the following:

- Psilotum and Lycopodium
- SelaginellaIsoetes, Equisetum
- Ophiglossum and Botrychium
- Angiopteris, Pteris&Hymenophyllum
- Marselia, Salvinia and Azolla

HCP-1.7: GYMNOSPERMS AND PALEOBOTANY

Gymnosperms : Study of vegetative habit, Anatomy and reproductive structure of the following

	Cycas and zomia		
	Pinus, Taxus and Thuja		
	Gnetum,Ephedra, Welwitschia		
	Ginkgo		
Paleobotany: Study of fossil forms using moulds, charts, photography and slides			
	Lepidodedron		
	Calamites		
	Leginopteris		
	Geological Time scale using chart		

SCP-1.8: BIOSTATISTICS AND BIOINFORMATICS	
Biostatistics	
Measures of central tendency	
Measures of Dispersion	
Correlation and Regression	
Bioinformatics	
Biological Databases	
a) Nucleotide Database	
1. GenBank	
2. Embl	
3. DDBJ	
b) Protein Database	
1. Swiss-Prot	
2. PDB	
Sequence collection from NCBI	
Alignment Tool	
1. PSA (Pairwise Sequence Alignment-Align tool)	
2. MSA (Multiple Sequence Alignment- clustal w tool)	
Database Searching Tool	
1. BLAST	
2. FASTA	

SEMESTER II

	HCT-2.1 ECOLOGY AND PHYTOGEOGRAPHY	52 hrs		
 Course object This of ecology applied To un it at g Possible oute 	ctives: course aims to introduce the students to the concepts and principles of gy, population, community and ecosystem structure and function and cation of these concepts to solve environmental problems. derstand the importance of environment and the problems related with lobal and local level. comes:			
Students will understand the importance of nature surrounding us and their role. Students will know the disturbance of climatic changes on human beings. Students will understand the evil effect of global warming and UV radiation.By understanding these concepts, the student will be able to develop attitude, value system and ethics towards environment related issues.				
 Programmes The secolog Know adapta 	specific outcomes: students get to understand the basicconcepts of geology, pedology, gy,autecology, synecology, phytogeography and advanced ecology. the establishment of ecosystem, vegetation, plant succession and ations.			
Unit-I	Ecology: concept of autecology and synecology, aim and scope, ecological factors- temperature, edapic, topographic, climatic and biotic factors	6 hrs		
Unit-II	Ecosystems: structure, abiotic and biotic components, food chain, food web, ecological pyramids, energy flow	4hrs		
Unit-III	Population Ecology: growth curves, ecotypes, ecads, hydrosere and ecological succession, xerosere, concept of climax vegetation	4hrs		
Unit-IV	Ecological Adaptations: Morphological, anatomical and physiological responses of plants, hydrophytes, xerophytes, epiphytes, halophytes, heliophytes and sciophytes	6hrs		
Unit-V	Community Ecology: methods of studying natural vegetation by quadrants, bisects, transects. Remote sensing and GIS	3hrs		
Unit-VI	Environmental pollution: Introduction, causes, effects and control measures of water pollution, air pollution, soil (Land) pollution, noise pollution, acid rain, global warming, ozone depletion and public	7hrs		

	health	
Unit VII	Phytogeography: Theory of land bridges, theory of continental drift, theory of glaciations. Phytogeographic regions of the world and India. Endemism, hotspots. Endemism in Western Ghats.	10hrs
Unit VIII	Biodiversity: Magnitude, Assessment, Importance, Conservation, Utilization.Conservation of Biodiversity: Current practice in conservation in India and abroad:Strategies for <i>in situ</i> conservation – Protected areas, Wildlife sanctuaries, National parks,Biosphere reserves, Mangrooves.Strategies for <i>ex situ</i> conservation – Botanical Gardens, Seed banks, <i>in vitro</i> conservationOrganizations involved in resource conservation IUCN, WWF, UNEP, and UNESCO.	12hrs

- 1. Agarwal S.B. and M. Agarwal. 2000. Environmental pollution and responses.
- 2. Ambasht, R. S. (1976) *Principles of Ecology* (I st Eds.) Students Publications, Varanasi, India.
- 3. Arumugam, N (1996) *Concept of Ecology* (VII th Eds.) Saras Publication, Kanyakumari, India.
- 4. Chapman G P (1977). *Human and Environmental Systems: A Geographer's Appraisal*. Academic Press.
- 5. Chapman J L, Reiss M J (2005). *Ecology: Principles and Applications*. Cambridge University Press.
- 6. Chapman J.L. and M. J. Reiss. 2000. Ecology: Principles and applications.
- 7. Dash, M. C. (1994) *Fundamentals of Ecology*. Tata McGraw Hill Publication Comp. Ltd. New Delhi, India
- 8. Elton C S (1958). The Ecology of Invasion by Plants and Animals. Methuem, London
- 9. Forman R T (1995). Land Mosaics: The Ecology of Landscapes and Regions. Cambridge University Press
- 10. Forman R T T, Godron M (1986). Landscape Ecology. John Wiley & Sons.
- 11. Fox C W, Roff D A, Fairbairn D J (Eds) (2001). *Evolutionary Ecology: Concepts and Studies*. Oxford University Press.
- 12. Krebs C J (2008). *Ecology: The Experimental Analysis of Distribution and Abundance* (VI Edn).Benjamin Cummings Publ.
- 13. Krishnamurthy K V (2004). *An Advanced Textbook on Biodiversity: Principles and practice*. Oxford and IBH. Publ. Co.
- 14. Levin S A (Ed) (2000). Encyclopedia of Biodiversity. Academic Press.
- 15. Mayhew P J (2006). *Discovering Evolutionary Ecology: Bringing Together Ecology and Evolution*.Oxford University Press

- 16. Miller G T (2004). Environmental Science. Thomson.
- 17. Odu, E. P. 1996. Fundamentals of Ecology.
- 18. Odum E P, Barrett G W (2005). Fundamentals of Ecology. Thomson Asia Pvt. Ltd.
- 19. Pianka E R (2000). Evolutionary Ecology (VI Edn). Benjamin Cummings.
- 20. Primack R B (1998). Essentials of Conservation Biology. Sinauer Associates.
- 21. PullinA S (2002). Conservation Biology. Cambridge University Press.
- 22. Ramakrishnan P S (1991). *Ecology of Biological Invasion in the Tropics*. International Scientific Publications.

	HCT-2.2 CELL AND MOLECULAR BIOLOGY	52 hrs
Course object To un and en To in biolog Basic with n	ctives: iderstand the structure and function of basic components of prokaryotic ukaryotic cells, especially its membrane organization and organelles. troduce to rapid contemporary changes witnessed in plant molecular gy. organization of genetic material and the realms of events associated replication and gene expression will be examined.	
Possible out	comes:	
Students will and genetic r regulation of regulation.	gain knowledge about the basic and fundamental organization of life naterial and their applications. It will also impart knowledge about the molecular mechanisms involved in the control of gene expression and	
Programme	specific outcomes:	
 By th cells if The s under To stuorgan To un synthe To stu Unit-I 	 e end of this course students will be able to understand the structure of in relation to the functional aspects. tudents will be able to learn about the basics of cell and its inclusionsto stand the difference betweenprokaryotic and eukaryotic cells. udy the details of the plant cell wall,cytosol and cytoplasmic elles. uderstand the properties of nucleic acids(DNA &RNA) and their esis udy the details of protein synthesis andcell signalling. Prokaryotic cell, ultrastructure of mycoplasma, bacteria. Structure of eukaryotic cell. Plasma membrane – organization and function. Cytoskeleton – microtubules, cilia and flagella. Structure and function of endoplasmic reticulum, Golgi complex, Ribosomes, mitochondria, chloroplast, lysosomes and peroxisomes. Structure and function of nucleus and nucleolus. 	10hrs
Unit-II	Structure and organization of eukaryotic chromosome, centromeric and telomeric structure, Law of DNA constancy and C-value paradox. Special chromosomes – B-chromosomes, polytene and lampbrush chromosomes.	8 hrs
Unit-III	Mechanism of cell division: Cell cycle regulatory enzymes and proteins, chiasma formation, mechanism of recombination, synaptonemal complex.	4 hrs
Unit-IV	Chromosomal Aberrations: types and evolutionary significance.	6hrs

	Numerical changes in chromosomes – euploidy, haploidy,	
	polyploidy, aneuploidy and evolutionary significance.	
Unit-V	Mutageneis - physical and chemical mutagens, molecular basis of	4 hrs
	mutation, DNA repair mechanism. Transposable elements,	
	transposon tagging of genes, genetic and evolutionary significance.	
Unit-VI	DNA replication, transcription (RNA synthesis and processing),	10 hrs
	DNA and RNA polymerases, genetic code, translation.	
Unit VII	Cell communication: Membrane transport principles-active and	4hrs
	passive transport, Brief on cell signaling with reference to plant	
	systems.	
Unit VIII	Gene isolation and characterization through PCR, RAPD, RFLP,	6hrs
	AFLP, SSR markers, structural and functional genomics.	

- 1. Allison.A. 2007. Fundamental Molecular Biology. Blackwell Publishing, UK.
- 2. Bob B Buchanan, Wilhelm Gruissem, Russel L Jones (2000). *Biochemistry and Molecular biology of plants. I K International Pvt. Ltd.*
- 3. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). *Molecular biology of the cell* (IV Edn). Garland Science, Taylor and Francis group
- 4. Cohn, N.S. 1969. *Elements of cytology*. Horcourt and World Inc. NewYork.
- 5. D Peter Snustad, Michael J Simmons (2010). *Principles of genetics* (V Edn). John Wiley and Sons.
- 6. Darlington, C.D. 1987. *Recent advances in cytology*. J A Churchil. London.
- Datnel, Lodish and Baltimore, 1986. *Molecular Cell Biology*-W.H. Freeman & Company, New York.
- David A Micklos, Greg A Freyer with David A Crotty (2003). DNA Science: A first course (II Edn).L K Inter
- 9. David P Clark (2010). *Molecular biology*. Elsevier.
- De Robertis& De Robertis, 2004. Cell and Molecular Biology. Lippincott. Williams and Wilkins. USA.
- 11. Freifelder, 1990. Molecular Biology, Narosa Publishing House, New Delhi.
- 12. Jain, H.K. 2000. Genetics, Oxford & IBH, New Delhi

- 13. Jocelyn E Krebs, Elliott S Goldstein, Stephen T Kilpatrick (2011). *Lewin's Genes X*. Jones and Bartlett Publishers
- Mary A. Schuler Raymond and E.Zrelinski, 2005. *Methods in Plant Molecular Biology*, Academic Press an imprint of Elsevier
- 15. Peter Porella, 1998. Introduction to Molecular Biology, McGraw Hill, New York.
- 16. Rastogi, S.C. 2004. Cell Biology. New age International Pub. New Delhi.
- 17. Robert J Brooker (2009). Genetics: analysis and principles (III Edn). McGraw Hill.
- 18. Schuler MA and Selinski, R. 1989. Methods in molecular Biology
- 19. Sharma. A.K. and Sharma, A. 1980. *Chromosome Techniques Theory and Practice*. Oliver and Boyd, London.
- 20. Singh and Tomar. 2004. Cell Biology. Rastogi Publishers, Meerut.
- 21. Swanson, C.P. 1972. Cytology and Cytogenetics. Mac Millan. New York.
- 22. Walker, J.M and R. Rapley, 2003. *Molecular biology and Biotechnology*, IV Edition. Panima Publishing Corporation, Bangalore.

	HCT-2.3: GENETICS AND EVOLUTION	52 hrs
Course object This Inherit The quant Evolut Descri- high of	ctives: course is intended to provide the basic understanding of genetic, itance, variation. paper will deal with Mendelian and non-Mendelian inheritance, itative genetics, molecular markers and linkage mapping. tionary biology is to teach past history & origin of living organisms. itbes concepts, theories & experimental evidences that support origin of order organism from primitive one.	
Possible out	comes:	
The students Mendelian ir understandin understand h survived wit human being	are expected to have better understanding of basic principles of hheritance, concept of linkage and mutagenesis. It also develops the g of management of inherited diseases. Learners will certainly now biological organisms including human beings have evolved, h natural adaptations possibilities of destruction for the survival of s & other organisms.	
Programmes	specific outcomes:	
 The s of gen popul Under applic Famil The s and g 	tudents will be able to acquireknowledge about the nature and function nes and processes of inheritance as they influence the characteristics of ationsand species. rstand the basic concepts of mendeliangenetics, its variations and cations iarize with the various concepts of evolution tudents will understand the concepts of microbial and human genetics enetic mapping.	
Unit-I	Mendelian principles, alleles, linkage and crossing over, genetic	10hrs
	maps. Sex determination in plants. Extrachromosomal inheritance,	
	somatic cell genetics. Inheritance of quantitative characters.	
Unit-II	Concept of genes – fine structure of gene, spit genes, overlapping genes, included genes. Recombination in bacteria and phages – conjugation, transformation and transduction.	8hrs
Unit-III	Gene expression in prokaryotes and in eukaryotes.	4hrs
Unit-IV	Genetic engineering – Restriction endonucleases, ligase, vectors,	6hrs
	northern blotting.	
11	Origin of life, chemical evolution, molecular evolution. Theories of	0h
Unit-V	evolution – Lamarckism, neo-Lamarckism, Darwinism, neo-	ðnrs

	Darwinism, Mutation theory and synthetic theory.	
Unit-VI	Population genetics and evolution – Mendelian population, gene	8hrs
	pool, gene frequency, genetic drift, founder effect, genetic	
	polymorphism. Hardy-Weinberg law, mechanism of speciation	
Unit VII	Molecular Evolution: Concepts of neutral evolution, molecular	8hrs
	divergence and molecular clocks; Molecular tools in phylogeny,	
	classification and identification; Protein and nucleotide sequence	
	analysis; origin of new genes and proteins; Gene duplication and	
	divergence.	

- 1. Goodenough U, 1990. Genetics. Armugam N, 1992. Organic evolution.
- 2. Basu.S.B. and M.Hossain.2004. Principles of Genetics. Books and Allied (P). Ltd, Kolkatta.
- 3. Benjamin, Levin. 2004. Genes VIII.
- 4. Benjamin Lewin (2000). Genes VII. Oxford university press. Blackwell Science Ltd.
- 5. Peter Snustad D, Michael J Simmons (2010). *Principles of genetics* (V Edn). John Wiley and Sons.
- 6. Daniel L Hartl, Elizabeth W Jones (2009). *Genetics: Analysis of genes and genomes* (VII Edn). Jones and Bartlett publishers.
- 7. Endress PK, 1994. *Diversity and evolutionary biology of tropical flowers*.
- 8. Gardner E J, Simmons M J, Snustad D P (1991). *Principles of Genetics* (III Edn). John Wiley and Sons Inc.
- 9. Gardner, E.J. 1972. Principles of genetics. Willey Eastern Pvt.Ltd.
- 10. George Ledyard Stebbins (1971). Process of Organic evolution.
- 11. Gupta, P.K, 2000. Gentics. Rasatogi publications, Meerut.
- 12. Gurbachan and S. Miglani, 2000. Basic Genetics, Narosa Publishing House, New Delhi.
- 13. Gurbachan S Miglani (2002). Modern Synthetic theory of evolution.
- 14. Katy Human (2006). *Biological evolution: An anthology of current thought.* The Rosen publishing
- 15. MaxtoshiNei, Sudhir Kumar (2000). *Molecular Evolution and phylogenetics*. Oxford University
- 16. Monroe W Strickberger (1990). Evolution. Jones and Bartlett publishers Press.
- 17. Reigner, R.A. A. Michalis and M.M. Green, 1976. *Glossary of Gentics and Cytogenetics*. Springer-Verlag, New York.
- 18. Robert J Brooker (2009). Genetics: Analysis and principles (III Edn). McGraw Hill.
- 19. Roderic D M Page, Edward C Holmes (1998). *Molecular Evolution: A phylogenetic approach*.
- 20. Sinnot, E.W. Dunn, L.E. and Dobzhansky, T. 1973. *Principles of Genetics*. McGraw Hill. New York.
- 21. Snustad D P, Simmons M J (2000). Principles of Genetics (III Edn). John Wiley and Sons.

- 22. Stickberger MW, 1994. Evolution.
- 23. Strickberger (2005). Genetics (III Edn). Prentice Hall of India Pvt. Ltd.
- 24. Strickberger, M.W. 1976. Genetics. Mac Millan. New York.
- 25. Swaminathan, M.S, P.K.Gupta and V.Singa. 1983. *Cytogenetics of crop plants*. Macmillan India Ltd, New Delhi.
- 26. Swanson, C.P. 1972. Cytology and Cytogenetics. Mac Millan. New York.

	SCT-2.4: METHODS IN PLANT SCIENCE	52 hrs
Course obje • To ac • To ki analy • To ur	ctives: quire the knowledge about biological techniques. now about the basic concepts, principles and significance of various tical and molecular techniques. Inderstand the various anatomical techniques.	
Possible out	comes:	
samples. The biological tec	course will give an expertise in understanding the various important chniques to be employed in the field of botany.	
Programme	specific outcomes:	
 The oplant The oplant The oplant 	course will nurture the knowledge on biological samples especially samples. course will give an expertise in understanding the various important gical techniques to be employed in the field of botany.	
Unit-I	Microscopy - Principles and working mechanism of transmitted and	10hrs
	incident microscopy. Principles, working mechanism and uses of	
	Dark field microscopy, polarization microscopy, fluorescence	
	microscopy, phase contrast microscopy. Electron microscopy – TEM,	
	SEM, STM.	
Unit-II	Processing of plant material for light and electron microscopy. Principles and uses of microtomy; Fixing of plant material, dehydration, staining procedures.	6hrs
Unit-III	Centrifugation techniques – differential, density gradient centrifugation. Spectroscopic methods – ultraviolet and visible spectroscopy, Raman spectroscopy, nuclear magnetic resonance technique, fluorescence and mass spectroscopy.	10hrs
Unit-IV	Isolation and purification of RNA, DNA (genomic and plasmid) and proteins, different separation methods. Generation of genomic and cDNA libraries in plasmid, phage, cosmid, BAC and YAC vectors. Expression vector and expression of protein in brief, Autoradiography, Method of DNA sequencing, micro array technique.	12hrs
Unit-V	Techniques of protein isolation, purification and separation – chromatographic techniques, ion exchange, gel filtration affinity	10hrs

	chromatography, high performance liquid chromatography.	
	Electrophoresis techniques – agarose, polyacrylamide	
	electrophoresis, capillary and immuno-electrophoresis.	
Unit-VI	Principles and applications lasers, tracer techniques in biology,	4 hrs
	radiolabel ling -carbon dating, molecular imaging of radioactive	
	material, safety guidelines.	

- 1. Ackerman E A, Ellis L E E, Williams L E (1979). *Biophysical Science*. Prentice-Hall Inc.
- 2. Berlyn GP and Miksche JP. 1976. Botanical micro-techniques and cytochemisty.
- 3. Chang R (1971). Basic principles of spectroscopy. McGraw Hill.
- 4. Friefelder D. Physical Biochemistry. W H Freeman and Co.
- 5. Garry D Christian, James E O'reilvy (1986). Instrumentation analysis. Alien and Bacon, Inc.
- 6. Gordon MH and Macrae M. 1987. Instrumental analysis in the biological sciences.
- 7. Henry B Bull (1971). An Introduction to physical biochemistry. F A Devis Co.
- 8. Mahadevan A, Sridhar R (1996). *Methods in Physiological Plant Pathology*. Sivakmi Publications.
- 9. Perkampus H (1992). UV-VIS Spectroscopy and its applications. Springer-Verlag.
- 10. Pesce A J, Rosen C G, Pasty T L. Fluorescence Spectroscopy: An introduction for Biology and
- 11. Robyt JF and White BJ, 1987. Biochemical techniques: theory and practice.
- 12. Salle A J (1974). Fundamental principles of Bacteriology. McGraw Hill.
- 13. Stanford J R (1975). Foundation of Biophysics. Academic press.
- 14. Wilson K and Walker JM.1994. Principles and techniques of practical biochemistry.
- 15. Allan peacock, H. 1966. Elementary Microtechnique. Edward Arnold Publ.
- 16. Bancroft, J.D, 1967. *An introduvction to Histochemical technique*. Appleton, Century Crofts, New York.
- 17. Berlyn, P.G, 1986. Botanical microtechnique and cytochemistry.
- 18. Duddington, C.L, 1960. Practical microscopy. Pitman publ.
- 19. Gahan, P.B, 1984. *Plant histochestry and Cytochemistry---* An introduction. Academic press, U.K.
- 20. George, E.F. and Sherrington, P.D. 1984. *Plant propagation by tissue culture*. Freeman Publishers, London.
- 21. Gray, P. 1964. Hand book of basic microtechnique. MacGrawHill , New Delhi.
- 22. Jayaraman, J. 1992. Tecniques in Biology. HigginBothams Pvt Ltd, Chennai.
- 23. Johnson, D.A, 1940. Plant microtechnique. MacGrawHill, New Delhi.
- 24. Kelkar, S.S., P.M. Kare and H.J. Jhala 1984. *Gel immuno diffusion techniques in the Research laboratory medicine*. New Delhi.
- 25. Kiernan, J.A, 1990. *Hisological and Histochemical Methods*. Theory and practice. Permagon press, U.K.

- 26. Krishnamurthy, K.V, 1988. *Methods in plant histochemistry*. Viswanathan printers and publishers, Chennai.
- 27. Lindsley, K. 1992. Plant tissue culture manual. Kluwer Academic publishers.
- 28. McClung, C.L, 1961. Hand book of Microscopic technique. MacGraw Hill, New Delhi.

HCP-2.5 ECOLOGY AND PHYTOGEOGRAPHY

- 1. Study of frequency and density of herbaceous plants by quadrate method
- 2. Determination of moisture content and water holding capacity of different types of soils
- 3. Estimation of alkalinity of water samples
- 4. Morphological and anatomical adaptation in hydrophytes, xerophytes (succulents and non-succulents), epiphytes and halophytes
- 5. Study of ecological instruments, visit to meteorological station is compulsory
- 6. Bacteriological analysis, physical, chemical parameters, pH, turbidity, TDS, BoD, CoD, temperature and other organic elements
- 7. Visit to effluent treatment plant to study recycling of waste water nearby industry
- 8. Floristic regions, Climatic regions and Forest types of India.

HCP-2.6 CELL AND MOLECULAR BIOLOGY

- 1. Study of cell division Mitosis (Allium cepa, Rhoeo, Urgenia, Scilla)
- 2. Study of Meiosis (Allium cepa, Helianthus, Tredescantiaflower buds)
- 3. Karyotype analysis ideogram preparation of ideogram
- 4. Study of chromosomal aberrations and polyploidy.
- 5. Isolation of genomic DNA from leaf tissue
- 6. Agarose Gel electrophoresis.
- 7. Separation of protein by SDS.
- 8. Isolation of RNA from plants.

HCP-2.7: GENETICS AND EVOLUTION

- 1. Study of life cycle in *Drosophila melanogaster*.
- 2. Observation of mutant flies.
- 3. Special type of chromosome in *Drosophila melanogaster*.
- 4. Genetics problem in Mendelian inheritance, gene interaction, quantitative

inheritance, multiple alleles, sex linkage and genetic map.

- 5. Application of Hardy-Weinberger law in gene frequencies.
- 6. Models and photographs related to genetics.

HCP-2.8: METHODS IN PLANT SCIENCE

- 1. Isolation of plant pigments and paper chromatography.
- 2. Estimation of protein by UV-Visible spectrometer.
- 3. Estimation of DNA by UV-Visible spectrometer.
- 4. Fixation of plant materials, dehydration, sectioning, staining and analysis.
- 5. Estimation f chlorophyll pigments by spectrophotometer

	OET-2.9NUTRICEUTICALS	52hrs
Course obje	ctives:	
• To in and to	npart the concept of nutraceuticals and functional ingredients in foods, o determine their role in health and disease prevention.	
• To 1	earn about various phytochemicals-their sources, functions and	
usefu	lness.	
• To il	lustrate the importance of food safety, food quality, food laws and	
regula	ations in Food industry.	
Possible out	comes:	
Students will importance	acquire basic knowledge on the physiology of human nutrition and the of nutraceuticals in the context of the human well-being.	
Nutraceutical	is/bloactive compounds familiarize students with the scientific	
footors asso	isted with chronic discusses and human health. The study analyses the	
students to u	nderstand the concept of food safety and their role in the human health	
and well-beir	nderstand the concept of food safety and then fore in the numan health	
Programme	"5" specific outcomes:	
• Gain	knowledge about functional foods and nutriceuticals.	
• Have	thorough knowledge about the health effects	
• Be fa	miliar with applications in industry.	
• The s	tudent will be able to recognize functional food products that are	
nutritionally logical, technically feasible, and that also are in compliance		
with FDA reg	gulatory guidelines.	
IInit-I	Nutriceuticals as science: Importance of nutriceuticals in human	13hrs
01111-1	health; basic food types, cultural diets, fast foods, street foods, junk	151115
	foods; functional foods; food pyramids; classification of nutrients	
	and their functions; anti-nutritional factors. Industrial fortification,	
	forms of nutrient supplementation, vitamin and mineral supplements;	
	biofortification, fortified crops; Golden Rice; energy drinks and	
	infant food formulae; dietary supplements, health benefits;	
	nutriceuticals on the market.	
Init_II	Plant and animal based nutriceuticals: Antioxidants, saponins,	13 hrs
01111-11	vitamins, minerals, carotenoids, amino acids, gum and resins, chitin,	15 11 5
	chitosan, glucosamine, chondroitin, cod liver oil; Algal nutriceuticals	
	(Spirulina, Sea weeds); Bacterial nutriceuticals, Probiotics	
	(youghurt), Prebiotics and Synbiotics; fermented foods in health care.	
	Lipid, carbohydrate and protein based nutriceuticals; dietary fibers,	
	source and health benefits. Recommended Daily Allowances.	
Unit-III	Neutriceuticals in health and disease: In preventive and protective	13 hrs
	medicine, in cancer treatment, cholesterol and obesity control.	
	Nutriceuticals from home garden (Aloe, Honey, Turmeric, Saffron,	
	Ginseng, Neem, fruits, spices, herbs, Bramhi, Tulasi, Bitter guard,	

	Fenugreek, Asafoetida, Ginger, Pepper, Garlic, Onion, Betel leaves). Diets in pregnancy, geriatric diets, paediatric diets; diets in diabetes and hypertension. Cosmeceuticals, plant based cosmeceutics in skin,	
	hair, eye and dental care.	
Unit-IV	Legal control of food safety and standards: National and international	13 hrs
	regulation of food and nutriceutical standards. The Food Safety and	ie ms
	Standards Authority of India: Food Safety and Standards Act, 2006,	
	Indian National Codex Committee, US Foods and Drugs	
	Administration, Codex Alimentarius Commission.	

- 1. Bagchi, D., Lau, F.C. and Ghosh, D.K. (Eds.). 2010. Biotechnology in functional foods and nutraceuticals. CRC Press, Boca Raton, Florida, USA.
- 2. Duggan, C., Watkins, J.B. and Walker, W.A. (Eds.). 2008. Nutrition in pediatrics: basic science and clinical applications. People's Medical Publishing House, Hamilton, USA.
- Government of Canada, 2013. Nutraceuticals / Functional Foods and Health Claims on Foods. Policy Paper. Hasler, C.M. (Ed.) 2005. Regulation of functional foods and nutraceuticals: A global perspective. IFT Press and Wiley-Blackwell, Ames, Iowa, USA.
- 4. Katsilambros, K. 2011. Clinical nutrition in practice. John Wiley & Sons, New York. USA.
- 5. Nestle, M. 2002. Food politics. University of California Press, Berkeley, USA.
- 6. Pathak, Y.V. (Ed.) 2010.Handbook of nutraceuticals. vol. 1: Ingredients, formulations, and applications. CRC Press, Boca Raton, Florida, USA.
- Shahidi, F. and Naczk, M. (EDs.) 2003. Phenolics in food and nutraceuticals. 2nd edition. CRC Press, Boca Raton, Florida, USA.
- 8. Shahidi, F. and Weerasinghe, D.K. (Eds.) 2004. Nutraceutical beverages: Chemistry, nutrition, and health effects. American Chemical Society, Washington D.C., USA.
- 9. Shils, M.E., Olson, J.A., Shike, M. and Ross, A.C. (Eds.) 1999. Modern nutrition in health and disease. Lippincott, Williams and Wilkins, Philadelphia, USA.
- UNICEF. 2013. Improving child nutrition: The achievable imperative for global progress. Wildman, R.E.C., Wildman, R. and Wallace, T.C. 2006. Handbook of nutraceuticals and functional foods. 2 edition. CRC Press, Boca Raton, Florida, USA.
- 11. Winter, H.G. and Tucson, A.Z. 1998.Vitamins, herbs, minerals and supplements: the complete guide. Fischer Books, USA.
- 12. World Health Organization. 2007. Community based management of severe acute malnutrition. The World Food Programme, the United Nations System Standing Committee

on Nutrition and the United Nations Children's Fund. Official Websites of Food Safety and Standards Authority of India and Codex Alimentarius Commission.

SEMESTER III

HCT-3.1 SYSTEMATIC BOTANY OF ANGIOSPERMS	52 hrs
Course objectives:	
To acquire the fundamental knowledge of plant systematics.	
To know about the basic concepts and principles of plant systematics. To know h	ow
to identify the plants.	
To create awareness of the f taxonomic relationships in plant systematic studies.	
Possible outcomes:	
The course will nurture the knowledge on classification of plants. The course wi	11
give an expertise in understanding characteristic features of various plant familie	es.
Programmespecific outcomes:	
• The students are able to understand about Plant taxonomy and their	
systematic classification systems	
• Are able to understand about modernapproaches in taxonomic studies.	
• Enlightened about the role of taxonomy in conservation of biodiversity.	
Introduction and History of Plant Taxonomy. Botanical Survey	of 10hrs
India- a brief account. International Code of Botanical Nomenclate	are
(ICBN/ICN), salient features, important rules and recommendatio	ns.
Binomial nomenclature, Botanical gardens of world and Inc	lia.
Maintenance and importance of herbaria.	
Unit-II The species concept, Taxonomic hierarchy, species, genus, family	6hrs
and other categories. Material basis of systematics; correlation,	
weighting, variations of characters and isolation	
Unit-III Systems of classification:	6hrs
2 Natural- Bentham and Hooker	
3 Phylogenetic systems	
a. Transitional- Engler and Prantl	
b. Intentional-Charles Bessay and Hutchinson	
c. Modern phylogenetic-Takhatajan, Cornquist	
A brief note on APG III system of classification	
Unit IV Taxonamy in relation to Anatomy, Embryology, Palynology,	6hrs
Cytology, Phytochemistry and Serology. A brief account of	
Numerical taxonomy.	
Unit-V Study of diagnostic, variability and systematic position of the	20 hrs
following:-	
Dicotyledons:	
Magnoliaceae, Nymphaeaceace, Papaveraceae, Urticacecae,	
Memspermaceae, Casuarinaceae, Nyciaginaceae, Maivaceae,	
Podostemaceae Loranthaceae Eabaceae Caesalpiniaceae	
Mimiosaceae Meliaceae Sapindaceae Linaceae Scrophulariaceae	
Bignoniaceae, Acanthaceae, Lamiaceae, Rubiaceae, Asteraceae	,
Chenopodiaceae, Apocynaceae, Zygophyllaceae, Polygonaceae:	
Unit-VI Monocotyledons-	4hrs
Alismataceae, Araceae, Cyperaceae. Poaceae. Commelinace	ae,

- Airy-show, H.K. 1983. Eighth edition. A dictionary of flowering plants and ferns, Cambridge Uni. Press.
- Bennet, S.S.R. 1979. An introduction to plant nomenclature, International Book Distributors, Dehradun.
- Cronquist, A. 1968. The evolution and classification of flowering plants, Thomas Nelson and Sons Ltd. London.
- 4. Jeffery, C. 1982. Sec. Edn. An introduction to plant taxonomy, Cambridge Uni. Press.
- Jhori, B.M. and Bhatnagar, S.P. 1994. Taxonomy of Angiosperms. Narosa Publishers, New Delhi.
- 6. Jones, S.B. and Luchsinger, A.E. 1979. Plant systematics McGraw Hill Book Co. N.Y.
- 7. Lawrence, G.H.M. 1951. taxonomy of vascular plants. Mac Millan, London.
- 8. Naik, N. 1984. Taxonomy of angiosperm., Tata McGraw Hill, New Delhi,
- 9. Pullaih ,T. 1998. Taxanomy of angiosperms, Regenecy publication, New Delhi.
- 10. Mondal A. K. Advanced Plant Taxanomy (2005) New Central Book Agency (P.) Ltd.
- 11. Radford, A. E., Dickinson, Massey, J. R. and Bell, c. R. 1974. Vascular plants systematic-Harper and Row, N. Y.
- 12. Sachdev, S. K. 1986. Experimantal plant taxanomy, Kalyani publishers, New Delhi.
- Sivarajan, V. V. 1984. Introduction to principles of plant Taxanomy, Kalyani publishers, New Delhi.

	HCT-3.2 PLANT ANATOMY AND EMBRYOLOGY	52 hrs
 Course object To struintern To struintern To struintern 	ctives: ady the plant anatomy which facilitate the process of understanding the al structures of various plant parts and their significance. udy the development of male and female gametes, pollination and zation reveals the various steps involved in development of new plant.	
Possible out	comes:	
The course w learners under able to know understand t addition, the angiosperms.	will illustrate anatomy of various plant parts. The course will make the erstanding about various stages of development. The student will be a details about various tissue system in plants. The students will also he scope and importance of anatomy and embryology in plants. In y will clearly understand the seed-to-seed developmental aspects of	
Programme	specific outcomes:	
 Unde Evalu Study Study Unde 	rstand photo morphogenesis and seedling development hate the root developments, flower development in plants the reproduction in plants with the help of male female gametophyte of microspogesis and megasprogenesis. rstand pollen-pistil interacting and seed development.	
Unit-I	Introduction and History, Primary and Secondary cell walls, Ultra	12hrs
	Structure and Chemistry of cell wall.	
	Theories of organization of root and shoot apical meristems.	
	Cambium: General account.	
	Xylem: Ontogeny, Phylogeny, Evolution, ultra-Structure and	
	function.	
	Phloem: Ontogeny, phylogeny, Evolution Ultra structure of sieve	
	tube elements and functions.	
Unit-II	Primary and secondary growth: Anamolous primary structures with	12hrs
	special reference to Nyctanthus, Achyranthus. Anamolus secondary	
	growth with reference to Boerrhavia, Bignonia, Leptadinia, Piper,	
	Tinospora, Thunbergiacoccinea.	
	Wood anatomy, Softwood, Hard wood, Ring and Diffuse porous	
	wood, Xylem parenchyma, Ray parenchyma.	
Unit-III	Epidermal tissue system: Types of stomata, trichomes and glands.	2hrs
Unit-IV	Embryology: Introduction, History and scope of Embryology	12hrs

	Microsporogenesis: Development, types and functions of tapetum.	
	Role of tapetum in pollen development, sporopollinin, pollen allergy.	
	Male gametophyte: Development of pollen tube, pollen mitosis,	
	vegetative and generative cells and heterospory.	
	Megasporogenesis: Megaspore, diad, tetrad and coenomegaspore.	
	General account of mono, bi and tetra sporicembrosac development	
	(No type studies of tetrasporicembryosac).	
	Female gametophyte: Organization of mature Embryo sac, Ultra	
	structure of Egg apparatus, Nutrition of Embryo sac.	
Unit-V	Pollination: Brief account of Structure, Histo-Chemical details of	6hrs
	Style and Stigma, Pollen germination, Pollen embryo sac. Self-	12
	incompatibility.	
	Fertilization: Path of entry of Pollen tube, Site of pollen discharge.	
	Double fertilization.	
Unit-VI	Endosperm: Types of Endosperm development, Endosperm	8hrs
	haustoria, and function.	
	Embryogenesis: Monocot and dicot embryo development.	
	Apomixis: A general account, causes, significance and genetics of	
	apomixes and Polyembryony.	
1		

- 1. Clegg, CJ and Cox G. (1974) Anatomy and Activities of Plants- A guide to the study of flowering plants.
- 2. Cutler, D. F. (1978) Applied Plant Anatomy, Longman, New York.
- 3. Cutler E. Plant Anatomy: Experiments and interpretation. Part-1. Cell and Tissues Edword, Arnold, London (1969).
- 4. Cutter E. Plant Anatomy: Experiments and interpretation. Part-2. Organs. Edward, Arnold, London (1971).
- 5. Eames E. J. and McDaniel's (1947). An introduction to plant anatomy, Mc Grew Hill, New York and London.
- 6. Esau, K. (1960) Anatomy of seed plants. John Wiley and Sons.
- 7. Esau, K. (1965) Plant Anatomy, 2nd Edition.
- 8. Esau, K. (1965) Vascular differentiation. Hort, Rinehert and Winston, New York.
- 9. Fahn, A. (1974) Plant Anatomy, 2nd Edition, Pregmon.
- 10. Krishnamurthy. K. V. methods in Plant Histo-Chemsitry. Vishwanathan, S. Madras, 1988.
- 11. Roy, K. (2006) Plant Anatomy, New Central Book Agency (P) Limited. Calcutta.

- 12. Maheshwari P. (1950). An introduction to embryology of Angiosperms. McGrew Hill, New York.
- 13. Bhojwani S. S. and Bhatnagar S. P. (2000). The embryology of Angiosperm (4th revised and enlarged edition) Vikas Publishing house, New Delhi.
- 14. Raghavan V. (1997). Molecular embryology of flowering plants. Cambridge University press, Cambridge.
- 15. Raghavan V. (1986). Embryogenesis in angiosperm- A development and experimental studies. Cambridge University Press New York USA.
- 16. Raghvan V. (1987). Molecular Biology of flowering plants Cambridge University Press New York USA.
- 17. Shivanna K. R. and Sawhney V. K. (eds) 1997. Pollen Biotechnology for crop production and improvement. Cambridge University, Cambridge.

НС	Γ-3.3 MEDICINAL PLANTS AND PHYTOCHEMISTRY	52 hrs
Course object	tives:	
• To stu	dy the concept of Ethanobotany and Ethanomedicine.	
To ide	entify the most important medicinal plants.	
To pro	ovide the basic information on pharmacognosy including: taxonomy of	
the cr	ude drugs, their cultivation and medicinal importance.	
To de plants	escribe the basic methods of extracting the active components from and how to identify them.	
State active	the phytochemical classification and memorize the main categories of components, contained in medicinal plants.	
Possible outo	comes:	
Learner will	definite witness the role of plants in survival of human beings and	
other organis	m. They will also well verse with contribution made by our primitive	
people in ex	xploration of plant knowledge to alleviate common diseases and	
development	of system of medicine. Students will be able to Identify the biological	
source, morp	hology, cultivation, collection, drying, packing, storage, medical as	
well as non-n	different chamical constituents present in plants their biosymptotic	
origin charac	terization natural occurrence and pharmacological action	
Programmes	necific outcomes:	
• Learn	er will definite witness the role of plants in survival of human beings	
and of	her organism.	
• They	will also well verse with contribution made by our primitive people in	
explo	ration of plant knowledge to alleviate common diseases and	
develo	opment of system of medicine.	
• Stude:	nts will be able to identify the biological source, morphology,	
cultiv	ation, collection, drying, packing, storage, medical as well as non-	
medic	al uses of plants and plant secretions.	
• Stude:	nts will also be able to identify the different chemical constituents	
preser	it in plants their biosynthetic origin, characterization, natural	
occuri	ence and pharmacological action.	
Unit-I	Ethnobotany and Ethnomedicine. A brief account at world level and	12hrs
	in India. A brief account on the apeutic values of important plant	
	drugs of different taxonomic groups.Classification of medicinal	
	plants.	
Unit-II	Pharmacognosy: Raw drug analysis, microscopic, macroscopic,	12hrs
	Characteristics, preliminary chemical analysis, qualitative and	
	quantitative analysis of raw drug using Colorimetry	
	quantitative analysis of raw utug using Colorinnetty,	
	Spectophotometry, Chromatography (Senna, Datura, Cinchona,	

	Ginger, Nuxvomica, Withania, Rauwolfia, Emblica)	
Unit-III	Cultivation of medicinal and aromatic plants: Cultivation practice,	12hrs
	disease and pest control, harvesting and storage of medicinal plants,	
	post-harvest care, deterioration and disintegration of active	
	compounds during storage and its control. (Dioscorea, Isabgol,	
	Senna, Liquiorice, Rauwolfia, Costus, Withania, Citronella, Vetiver,	
	Artimisia, Acorus, Vanilla)	
Unit-IV	Phytochemistry - Occurrence, classification and properties of	8hrs
	Alkaloids, Steroids, Terpenoids, Lectins, Non Protein Amino acids.	
	Pesticidal, and Insecticidal properties of compounds of plant origin	
Unit-V	Medicinal oil: occurrence, distribution and importance of aromatic	8hrs
	and non aromatic oils of plant source. Use of vegetable oil as food,	
	medicine and industry. Plants in the treatment of Stress, Heart	
	diseases, Cancer, AIDS, anti fertility, anti-microbial activity.	

- 1. Kirtikar K. R. and Basu B. D. 1932 Indian Medicinal plants.
- 2. Nadakarni, A. K. 1954 Indian MateriaMedicaVol I and II
- 3. Sivarajan V. V. and Indira, B. 1994 Ayurvedic drugs and their plant sources. Oxford &IBH Publishing Co, New Delhi.
- 4. Trease, G. E. and Evans, W. L. 1983 Pharmacognosy 12th ed. Bailliere Tindall, London.
- 5. Vaidya, B. 1982 Some controversial drugs in Indain medicine. ChaukambicaOrientalia, Varanasi.
- 6. Harborne, J. 1984 Phytochemical methods. Ed Chapman & Hall, London
- 7. Mann, J., Davidson, R. S., Hobbs, J. B., Benthorpe, D. V. and Harborne Natural products, Longman Scientific and Technical Co, Essex
- 8. Smith, P. M. 1976 The Chemotaxonomy of plants Edward Arnold, London.
- Rastogi, R.P. and Mehrotra, B.N. 1991. Compedium of Indian medicinal plants Vol.I&II. Publishers. Central Drug Research Institute Lucknow and Publications and Information Directorate New Delhi
- Vijay adnhaleshi C 2004 Compendium on Controversial Drugs, JagdguruSrimanMadhwacharyaMoolamahasamsthana Sri RaghavendraswamyMatha, Manthralayam.

SCT-3.4 EC	ONOMIC BOTANY AND CONSERVATION OF BIODIVERSITY	52 hrs
Course object The import To lead To and produ	ctives: course is also designed to provide the knowledge about economic rtance of various plants. arn the diverse human uses of plants and plant products. cquire an increased awareness and appreciation of plants and plant acts encountered in everyday life.	
Possible out The study w families of us products ence of plants and	comes: vill develop a basic knowledge of taxonomic diversity and important seful plants and Increase the awareness and appreciation of plants & plant ountered in everyday life. Students will be able to appreciate the diversity the plant products in human use.	
Unit-I	Introduction: Plants in commerce and industry. General account: History, methods of cultivation and uses - Rice, Wheat, maize, Tea, Coffee, Rubber, Sunflower, Safflower, Groundnut, Lin seed, Cotton,	12hrs
Unit-II	 Jute, Coconut, Agave, Teak, Managony and Vegetable sponges. Family, useful parts and Chemical constituents: Cardamom, Cinnamom, Clove, Ginger, Pepper, Coriander, Fennel, Henna, Indigofera, Butea, Arecanut, Beetle Leaf, Tobacco, Turmeric and Vanilla, Herbal drugs: Roots, stem, wood, leaves, flowers, fruits and seed. 	12hrs
Unit-III	Introduction to Biodiversity: Concept, importance of biodiversity with reference to natural resources, genetic resources, maintaining ecosystem and abiotic resources.	4hrs
Unit-IV	Levels of Biodiversity: Species, Genetic, Ecosystem, Habitat, Plant and Animal Biodiversity in India, Kinds of Biodiversity – Alpha, Beta and Gamma.	3hrs
Unit-V	Loss of Biodiversity: Loss of genetic diversity, Loss of species diversity, Loss of ecosystem diversity, Loss of agrobiodiversity, Projected scenario for biodiversity loss.	3hrs
Unit-VI	Management of Plant Biodiversity: Organizations associated with biodiversity management-Methodology for execution-IUCN, UNEP, UNESCO, WWF, NBPGR; Biodiversity legislation and conservations, Biodiversity information management and communication.	6hrs

Unit-VII	Conservation of Biodiversity: Conservation of genetic diversity, species	6hrs
	diversity and ecosystem diversity, In situ and ex situ conservation,	
	Social approaches to conservation, Biodiversity awareness programmes,	
	Sustainable development.	
Unit-VIII	Role of plants in relation to Human Welfare: Importance of forestry	6hrs
	their utilization and commercial aspects, Avenue trees, Ornamental	
	plants of India, Fruit crops of Karnataka and their commercial	
	importance. Wood and its uses.	

- 1. Krishnamurthy, K.V. (2004). An advanced text book of biodiversity Principles and Practices. Oxford and IBH Publications Co. Pvt. Ltd. New Delhi.
- 2. VeenaArora 202 Natraj Publishers, Dehradun Publisher : The Biological DiversityAct,
- 3. EdtHeyword, V.H.: Global Biodiversity Assessment Part I
- 4. M.S. Prashanth : Environmental Studies.
- 5. M.C. Dash : Fundamental of Ecology.
- 6. D.K. Asthana , MeeraAsthana : Environment :- Problems & Solutions.
- 7. D.K.Belsare : Introduction to Biodiversity.
- 8. SurendraSingh : Geomorphology and Remote Sensing in EnvironmentalManagement.
- 9. N.DasGupta : Environmental Accounting.
- 10. ErachBharucha : Textbook of Environmental Studies.
- 11. M.L. Narasaiah : Biodiversity & Sustainable Development.
- 12. M.L.Narasaiah : Education & Biodiversity.
- 13. R.L. Panigrahy, LingarajPatro : Biodiversity Conservation and Sustainable Development.

HCP-3.5 Systematic Botany of Angiosperms.

- 1. Description of plants using technical terms
- 2. Identification of plants to species using flora
- 3. Preparation of dichotomous key for identification.

HCP-3.6 Plant Anatomy and Embryology.

- 1. Preparation of permanent slides of free hand /paraffin Sections
- 2. Wood anatomy study based on T.S., T.L.S. and R.L.S.
- 3. Dermal tissue system
- 4. Endosperm/ Embryo dissection
- 5. Observation of slides of Microsporogenesis and megasporogenesis.
- 6. Pollen germination and viability.

HCP-3.7: MEDICINAL PLANTS AND PHYTOCHEMISTRY.

- 1. Identification of medicinal plants.
- 2. Identification of raw drugs- pharmacognistic studies.
- 3. Identification of controversial drugs.
- 4. Preliminary tests for the occurrence of secondary metabolites.
- 5. Estimation of alkaloids
- 6. Estimation of Phenols
- 7. Estimation of Essentail oils.

SCP-3.8: ECONOMIC BOTANY AND CONSERVATION OF BIODIVERSITY

- 1. Field survey for collection of economically important plants of the region.
- 2. Study of locally available economic products of plant origin.
- 3. Estimation of Carbohydrates in Cereals.
- 4. Estimation of Proteins in Pulses.
- 5. In situ and ex situ Conservation methods.
- 6. A visit to Botanic Gardens, Zoologic Park, Biosphere Reserves, National Parks and Sanctuaries.

	SCT-3.9 Plant Propagation Techniques	52hrs
Course obje • To in and to in the • To m and c and th Possible out The course w plants by see (tissue cultur and sexual manipulate th plants.	ctives: troduce the botanical concepts that underlie the propagation of plants o acquaint the students with the methods and technologies that are used propagation industry. ake students think critically about plant propagation to solve problems ommunicate and explain the scientific basis for the different techniques neir individual use and application. comes: vill make the learners knowing about various techniques of propagating ds, rooting cuttings, grafting, budding, layering, and micropropagation re). Students will be able to select the appropriate methods of asexual propagation based upon biological characteristics of the crops and he propagation environment to promote the successful propagation of	
Programme	specific outcomes:	
 Plan the propagation of different plant species from seeds, using different seed propagation methods. Plan the propagation of different types of plants from cuttings, using different cutting propagation methods. Determine the management practices of significance to the commercial viability of a propagation nursery. 		
Unit-I	Plant propagation- History, scope and importance. Propagation	3hrs
	structures with reference to greenhouse equipment and media.	
Unit-II	Seed propagation; Germination, type of seed dormancy and breaking, techniques of seed production and handling principles.	8hrs
Unit-III	Vegetative propagation:	14hrs
	Techniques of propagation	
	a) Cuttings: Stem cuttings - hard wood, semi hard wood, soft wood	
	and herbaceous, leaf cuttings, leaf bud cuttings, root cuttings.	
	b) Layering: Simple layering, compound, tip layering, stool, air,	
	serpentine and trench layering.	
	c) Budding: T – budding patch budding, chip budding, ring budding.	
	d) Grafting: Whip and tongue, wedge and cleft, bark, side grafting,	
	approach.	
	e) Propagation by specialized stems and roots	
Unit-IV	Micropropagation – Techniques and applications in forestry and	5hrs

	horticulture.	
Unit-V	Advantage, limitations and applications of vegetative propagation,	5hrs
	clones, genetic variation in asexually propagated plants, different	
	methods.	
Unit-VI	Seed propagation: Seed production, types of seed sowing, harvesting,	12hrs
	drying and thrashing, storage, types of storage, pathogens in storage	
	and their control, seed health, purity, vigor, and tests to check.	
	Dormancy types, factors affecting dormancy, methods to overcome	
	dormancy, advantages of dormancy. Seed germination and viability	
	tests seed protectants; priming. Coating, pelleting, Classes of seeds;	
	breeder seeds, nuclear seeds, founder seeds, certified seeds and	
	cultivar seeds, seed act 1966, seed certification. Liner production and	
	hardening of seedlings, seed certification, seed act	
Unit-VII	Propagation methods of some selected plants – Citrus, Grape, Mango,	5hrs
	Mulberry, Hibiscus, Rose, Croton, Eucalyptus.	

- 1. Abbottt, A.J. and Atkin, R.K. 9eds.) 1987 Improving vegetatively propagated crops. Academic press, New York.
- 2. Bose, T.K., Sadhu, M.K., & Das, P., 1986. Propagation of Tropical and Subtropical Horticultural crops, NowyaPrakash, Calcutta.
- 3. Hartmann and Kester, 1983. Plant propagation.
- 4. Hartmann, H.T., Kester E.D., Davis, F.T., and Geneve, R.L. 1997. Plant propagation. Principles and practices. Prentice Hall of India Private Limited, New Delhi.
- 5. Krishnamurthy. H.M. 1981. Plant Growth substances including application in Agriculture.
- 6. L.M. Pierik 1987. In vitro culture of Higher plants MurtinusNijhoff pub. Dordrecht.
- 7. M.K. Razdan 1994. An Introduction to Plant tissue culture, Oxford and IBH Pub. Co., PVT. Ltd., Bombay and Calcutta.
- 8. Mac Donald, B. 1987. Practical woody plant propagation for nursery growers. Portland, OR: Timber press.
- 9. Sadhu, M.K. 1989. Plant propagation Wiley eastern Ltd. N. Delhi.
- 10. Hartman, H.J. 1990. Plant Propagation: Principles and practices. Prentice Hall, New Delhi.
- 11. Sadhu, M.K. 2000. Plant Propagation. New Age Publication, New Delhi.
- 12. Schwalz, M. 1975. Guide to commercial hydroponics. Israel University, Jerusalem.
- 13. Sharma, V.K. 1996. Plant nurseries. Techniques, production and management. Indian Pub. New Delhi.

SEMESTER IV

	HCT-4.1 PLANT PHYSIOLOGY	52 hrs
Course obje • The water and p • Expla stress	ctives: course would deal with the study of plant physiology especially the transport, absorption, mineral nutrition, photosynthesis, respiration hytohormones. ains physiological responses produced by plants against environmental tes.	
Possible out	comes:	
The students material reso phenomena energy to ma regulators. S different stre	will be able to understand how plants acquire and use the energy and surces required to complete their life cycle. Students will understand the of carbohydrate synthesis in plants and use of the carbon to generate aintain plant functions; and control of plant functions through growth Students will understand the physiological changes occurred during ss conditions such as water deficit, salinity and heat stresses.	
Programme	specific outcomes:	
 The water Comp Unde integ Get a plant 	Students will learn about absorption,translocation and utilization of and other minerals. orehend the changes during growthprocess (germination to abscission). rstand the energy flow and variousmetabolic cycles with their ration. n overall perception about variousphysiological processes occurring in s.	
Unit-I	Water relations: solutions, colloids, molarity, buffer molar solutions,	6hrs
	pH, emulsion and gels. Permeability, theories of cell permeability and	
	biosignaling, diffusion, osmosis, membranes, osmotic pressure,	
	turgur pressure, wall pressure, relation between OP, DPD and TP,	
	concept of water potential, plasmolysis, significance of osmosis and	
	Active and massive water charaction, machanism of eccent of con-	
Unit-II	Active and passive water absorption, mechanism of ascent of sap:	6hrs
	water potential gradient	
	Transpiration: types mechanism theories of opening and closing of	
	stomata, factors affecting rate of transpiration anti-transpirants and	
	guttation	
	Unit 4. Mineral nutrition: macro and micronutrients and their role	Al-
Unit-III		4hrs

	and deficiency symptoms, absorption of mineral salts, nature of	
	membranes general mechanism of solute absorption	
Unit-IV	Unit 5. Photosynthesis: structure of chloroplast and photosynthetic	10hrs
	pigments, action spectrum, concept of two photosystems, red drop	
	and emerson enhancement effect, photophosphorylation, celvin cycle,	
	C4 and CAM pathways, photorespiration and factors affectiong on	
	photosynthesis	
Unit-V	Unit 6. Respiration: aerobic, anaerobic and fermentation glycolysis,	6 hrs
	krebs cycle, electron transport system, redox potential, oxidative	
	phosphorylation, pentose phosphate pathway. Respiratory quotient	
	(RQ) and factors affecting on respiration	
Unit-VI	Nitrogen fixation, importance of nitrate reductase its regulation and	4hrs
	ammonium assimilation. Proteins- structure and synthesis, lipid	
	metabolism.	
Unit-VII	Enzymes- classification, properties and nomenclature (IUBMB), co	6hrs
	factors, co-enzymes, isozymes, mechanism of enzyme action, enzyme	
	inhibition enzyme kinetics.	
Unit-VIII	Growth: photomorphogenesis, photoperiodismphytochrome,	10hrs
	vernilizationand concept of biological clock. Seed dormancy- causes	
	and methods of breaking dormancy. Stress physiology- concept and	
	plant responses to water, salt and temperature stresses, physiological	
	action of Auxins, Gibberellins, Cytokinins, ABA, ethylene and	
	growth inhibitors.	

- 1. Bidwell.R.G.S, 1974. Plant physiology. Macmillan pub, Co, New York.
- Bob B. Buchanan, Wilhelm Gruissem and Russell L. Jones. 2000. Biochemistry & Molecular Biology of Plants.. ASPP publication
- David L. Nelson and Michael M.CoxLehninger Principles of Biochemistry: Fifth edition) 2009. W. H. Freeman publication.
- 4. Devlin, R.M. 1996. Plant physiology, PWS publisher, Boston.
- 5. Frank B Salisbury, Cleon W Ross (1992). Plant Physiology (IV Edn). Wadsworth Publishing
- 6. Gardner, F.G., R.B. Pearce and R.L. Mitchell. 1985. Physiology of crop plants. Scientific publishers, Jodhpur.

- 7. Khan, A.A. 1977. Physiology and Biochemistry of Seed dormancy and germination, Oxford & IBH Publishing company (P) Ltd, New Delhi.
- 8. Kozlowshki, T. 1968. Water deficit and plant growth. Vol. II., Academic Press. New york.
- 9. Leopold, A.C, 1994. Plant growth and development, McGraw Hill, New York.
- 10. Levitt, J. 1969. Introduction to Plant physiology, Morsby International Ed., London.
- 11. Lincoln Taiz and Eduardo Zeiger, 2005. Plant Physiology. Sinauver Associates Inc. Publishers, Sunderland, Massachusetts.
- 12. Lincoln Taiz, Eduardo Zeiger (2002). Plant physiology (II Edn). Sinaeur Associates, Inc. Publishers.
- 13. Panda, S.K, 2005. Advances in Strees Physiology of plants, Scientific publishers India, Jodhpur.
- 14. Price, C.A. 1970. Molecular approaches to Plant Physiology, McGraw Hill, Book company, London.
- 15. Salisbury, F.B and Cleon Ross, 2007. Plant physiology, Wadsworth publishing company, Belimont.
- 16. Slatyer, T.O. 1961. Plant water relationship, Academic press, New york.
- 17. Street H.E. and W. Cookborn. 1972. Plant metabolism, E.I.B.S. Ed., Pergamon press, New York.
- 18. Suteelife, J.F. 1968. Plant and Water, E.I.B.S. Ed., Pergamon press, London.
- 19. Taiz, L. and Zeiger, E., Sinauer Plant Physiology. (2nd edition), Associates, Inc., Publishers, Massachusetts, USA.

	HCT-4.2 PLANT BREEDING	52 hrs
Course object To replant to the plant breeding to the plant br	ctives: alize the significance of plant breeding techniques in improving the productivity and strain improvement. escribe sources and types of genetic variation and explain their tance for plant improvement. lighten students on practical problems of plant breeding and the ways heans of solving the problems. comes: will give a scientific approach to plant breeding techniques and their . Students will acquire basic knowledge of conventional and non- methods of plant breeding. By knowing the elementary principles in ng students will understand the importance and value of producing nsect resistant plants. They will also be familiar with methods used to	
change the tra	aits of a plant to create the desired genotype/phenotype.	
 Stude princi will b in the Stude progra By k under resista 	nts will understand the concepts of plant breeding involving the ples, selection procedure and achievements in plant breeding. So they be enabled to implement their knowledge on plant breeding techniques ir agriculture fields for the improvement of crops. nts will understand the variousprocesses in crop improvement am. nowing the elementary principles in plant breeding students will stand the importance and value of producing disease and insect ant plants.	
Unit-I	Introduction:Objectives of plant breeding, important achievements and future prospects, Genetic variability and its role in plant breeding, Domestication and centers of origin of cultivated plants.	6 hrs
Unit-II	Systems of reproduction in plants: Reproductive system; sexual and asexual Pollination; cross and Self-pollination control mechanism, Incompatibility, male sterility and their types, Apomixsis	10 hrs
Unit-III	Hybridization:Methods of hybridization and its role.Inter-varietal, inter specific and inter generic crosses.Heterosis and inbreeding depression.	8 hrs
Unit-IV	Breeding for resistance: abiotic stresses (drought and salinity), biotic stresses (disease and insects).	10hrs
Unit-V	Mutation breeding:Mutations (Spontaneous and induced), Chemical	9 hrs

	and physical mutagens. Methods of mutation breeding, Limitations and achievements of mutation breeding.	
Unit-VI	Molecular breeding : Molecular marker system, RFLP, RAPD, AFLP, SSR and SNPs.Methods and importance of marker assisted	9 hrs
	breeding	1

- 1. Al Chaudhari, H.K. (1984). Elementary principles of plant breeding Oxford IBH..New Delhi lards R W (1995). Principles of Plant Breeding. John Wiley and Sons, Inc.
- 2. Allard, R.W, 1960. Principles of plant breeding. John Willeg, New York.
- 3. Chaudhary, H. K. (2001) Plant Breeding Theory and Practice, Oxford IBH Ltd, New Delhi, India
- 4. David Allen Sleper, John Milton. (2006). Breedign Field Crops. Blackwell Publishing Ltd.
- 5. Dwivedi and Singh (1980) Essentials of Plant Techniques, 2nd Ed., Scientific Publishers. Moan Bhavan Udaipur, India.
- 6. Gardner, E.J. (1972). Principles of genetics. Willey Eastern Pvt.Ltd.
- 7. Ghahal G S and Gosal S S (2002). Principles and procedures of Plant Breeding. Narosa Publishing House.
- 8. Gupata P. K. (2007) Genetics, Plant Breeding and Evolution. Rastogi Publication, Meerut, India
- 9. Gupta P. K. (1996) Cytology, Genetics, Evolution and Plant Breeding. Rastogi Publication, Meerut, India.
- 10. Hays, K.K. Immer, F.R. and Smith, D.C. (1985). Methods in plant breeding .Tata McGraw Hill. Newyork.
- 11. Neal.C.Stopskopf. (1999). Plant Breeding Theory & Practices. Scientific Publishers, Jodhpur.
- 12. Sharma J R (1994). Principles and practices of Plant Breeding. Tata McGraw-Hill Publishers
- 13. Sing B. D. (1996) Plant Breeding and Evolution.
- 14. Singh B D (1996). Plant Breeding: Principles and methods. Kalyani Publications Sinha, U and Sinha U., (1976). Cytogenetics, Plant breeding and Evolution. Vikas pub & Co, New Delhi.
- 15. Singh,B.D. 1996. Principles of plant breeding. Oxford IBH. New Delhi.
- 16. Singh,B.D. 2001. Plant Breeding, Principles and Methods. Kalyani Publications, , New Delhi
- 17. Sinha, U and U.Sinha, 1976. Cytogenetics, Plant breeding and Evolution. Vikas pub &Co, New Delhi.
- Swaminathan, M.S, P.K.Gupta and V.Singa. (1983). Cytogenetics of crop plants. Macmillan India Ltd, New Delhi.

	SCT-4.3 PLANT BIOTECHNOLOGY	52 hrs
 Course objective To train t in tissue quality of To learn transgenie 	es: the students in the aspects of innovative applications and techniques culture to conserve endemic, endangered plants and improve the f the economically important plants. the recent advances in genetic engineering and production of c plants	
Possible outcom Systematic training enhance the confi bio tagged produced dealing with bio	hes: ing given in the different branches of applied biotechnology will fidence in students to take up entrepreneurial ventures in developing ucts, and provide services in national and multinational industries utility and bio resource management.	
 Programmespec The stude plants and Have a cl Have a ba Be fully a 	cific outcomes: ents will understand the basicconcepts of genome organization in I molecular markers. lear knowledge of plant tissueculture techniques asic understanding of the plantgenetic transformation methods. aware of the basics and applications of plant biotechnology.	
Unit-I Pla Ma ex sel Ma sol cry cu	ant tissue culture: Scope and Importance of plant tissue culture- edia composition and types, hormones and growth regulators, plants for organogenesis, somaclonal variation and cell line lection, production of haploid plants and homozygous cell lines. icro propagation, somatic embryogenesis, protoplast culture and matic hybridization. Selection and maintainance of cell lines, yopreservation, germplasm collection and conservation, plant tissue lture certification.	8hrs
Unit-II Pla ba of ge Di an	ant transformation techniques: Mechanism of DNA transfer – Agro cterium mediated gene transfer, Ti and Ri plasmids as vectors, role virulence genes; design of expression vectors; 35S promoter, netic markers, reporter genes; viral vectors and binary vectors. rect gene transfer methods-particle bombardment, electroporation d microinjection. Binary vectors.	10hrs
Unit-III Mo of Bi	etabolic engineering of plants: Plant cell culture for the production useful chemicals and secondary metabolites (Hairy root culture, otransformation, Elicitation) - pigments, flavanoids, alkaloids;	10hrs

	mechanism and manipulation of shikimate pathway. Commercial	
	production of enzymes, biodegradable plastics, therapeutic proteins,	
	edible vaccines and antibiotics using transgenic technology.	
Unit IV	Plant Development: Plant growth regulators- auxin, gibberlins,	6hrs
	cytokinins, abscicic acid, acetylene. Biological nitrogen fixation,	0111 5
	importance and mechanism.Biofertilizers- production, VAM,	
	Rhizobium, Azotobacter, Mycorhiza, Actinorhiza Vermicomposting	
	technology and Biopesticides.	
Unit-V	Gene Manipulation Technology: Crop improvement, productivity,	10hrs
	performance and fortification of agricultural products-Bt cotton,	101115
	Btbrinjal. Herbicide resistance, viral resistance, bacterial resistance,	
	fungal resistance crops. Golden rice and transgenic sweet	
	potato.Stratagies for engineering stress tolerance. Transgenic plants;	
	Current status of transgenic plants in India and other countries,	
	Ethical issues associated with GM crops and GM food; labelling of	
	GM plants and products. Importance of integrated pest management.	
Unit-VI	Post-harvest technology: RNAi and antisense RNA technology for	8hrs
	extending shelf life of fruits and flowers (ACC synthase gene and	
	polygalactoronase); delay of softening and ripening of fleshy fruits	
	(tomato, banana, watermelons). Post-harvest protection of cereals,	
	millets and pulses.	

- 1. Alan Scragg, 2005. Environemntal Biotechnology. II Edition. Oxford University Press. New York.
- Bernard R. Glick and Jack J. Pasternak, 2001. Molecular Biotechnology 2nd edition, ASM press Washington DC.
- 3. Brown, C.W, I.Campbell and F.G. Priest, 1987. Introduction to Biotechnology. Blackwell scientific publications, Oxford.
- Chawla, H.S, 2000. Introduction to Biotechnology. Oxford & IBH Publishing Co Pvt. Ltd, New Delhi.
- 5. Chrispeels M.J.et al. 1994. Plants, Genes and Agriculture-Jones and Bartlett Publishers, Boston.

- 6. Gamborg O.L. and Philips G.C.Plant cell, tissue and organ culture (2nd Ed.) Narosa Publishing House. New Delhi.1998.
- 7. Gistou, P and Klu, H.Hand book of Plant Biotechnology (Vol. I & II). John Publication. 2004.
- 8. Gupta, P.K. 2003. Biotechnology and Genomics, Rastogi Publisher, Meerut.
- 9. Halford N.G. Plant biotechnology: current and future applications of genetically modified crops. John Wiely Publishers.2006.
- Hammond, J, P. Mc Garvey and V. Yusibov . 2002. Plant Biotechnology –New products and applications, Springer – Verlag, Heidelberg.
- 11. Hammound J, P McGravey&Yusibov.V. Plant Biotechnology, Springer verlag. 2000.
- 12. Hans-Peter Schmauder. 2005. Methods in Biotechnology. Taylor & Francis. London.
- Heldt. 1997. Plant Biochemistry and Molecular Biology. Oxford and IBH Publishing Co. Pvt.Ltd. Delhi.
- 14. Ignachimuthu, S.1997. Plant Biotechnology, Narosa publishing House, New Delhi.
- John.A.Thomas. 2004. Biotechnology and safety Assessment. II Edition. Taylor & Francis. London.
- Kirakosyan A and Kaufman P.B.Recent Advances in Plant Biotechnology (1st Ed.).Springer Publishers. 2009.
- Kumar, H.D. 2004. A textbook on Biotechnology 2nd edition, Affiliated East West press Pvt., Ltd., London.
- LydianeKyte and John Kleyn. Plants from test tubes. An introduction to Micro propagation (3rd Ed.). Timber Press, Portland. 1996.
- 19. Marx, F.L, 1989. A revolution in Biotechnology. Cambridge University press, New York.
- 20. Murray D.R. Advanced methods in plant breeding and biotechnology.Panima Publishing Corporation.1996.
- 21. NickoloffJ.A.Methods in molecular biology, Plant cell electroporation and electrofusion protocols-Humana press incorp, USA. 1995.
- Ranat, K.G. and J.M. Merillon. 2003. Biotechnology: Secondary Metabolites. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi.
- Rani Pathak. 2007. Introduction to Biotechnology. Atlantic Publishers & Distributors (P) Ltd., New Delhi.
- 24. Rastogi, S.C. 2007. Biotechnology- Principles and Applications. Narosa Publishing House, New Delhi.
- 25. Sawahel W.A. Plant genetic transformation technology. Daya Publishing House, Delhi.1997.
- 26. Slatu A .The genetic manipulation of plant. Oxford University Press.2003.

- 27. Sridhar, S. 2005. Enzyme Biotechnology, Dominant publishers and Distributors, New Delhi.
- Trevan M.D, S. Boffey, K.J Goulding and P.Stanburg, 1977. Biotechnology: The Biological principles. TATA McGraw – Hill, New Delhi.
- 29. Walker, J.M. and R. Repley. 2006. Molecular Biology and Biotechnology. IV Edition. Panima Publishing Company, New York.

HCP-4.4PLANT PHYSIOLOGY

- 1. Study of permeability of membranes using different concentration of organic solvents
- 2. Determination of osmotic potential of cell sap by plasmolytic methods
- 3. Separation of chloroplast pigments by solvents methods
- 4. Determination rate of photosynthesis using different wavelengths
- 5. Determination of RQ of carbohydrates, fats and proteins
- 6. Detection of carbohydrates, fats, oils, alkaloids, enzyme activity in plant tissue
- 7. Study of plant movements
- 8. Physiological action of plant hormones
- 9. Study of inorganic elements in plant tissues/ash
- 10. Experiments on stress physiology.

HCP-4.5 PLANT BREEDING

- 1. Visiting a plant breeding station to familiarize with breeding programmes.
- 2. Hybridization techniques, selfing and crossing techniques.
- 3. Technique of emasculation; Techniques in selfing and hybridization
- 4. Different types of layering (Simple layering, tip layering, serpentine layering, Air layering, mound layering).
- 5. Grafting Whip (or splice), side and bark grafting.
- 6. Budding T-budding, Inverted T-budding and chip budding.
- 7. Pollen viability; germination test and TTC test.
- 8. PCR Technique with known primers.

SCP-4.6 PLANT BIOTECHNOLOGY

- 1. Isolation of plasmids DNA from
- 2. Preparation of tissue culture media and organ culture (shoot tips, leaf)
- 3. Anther culture and haploid production
- 4. Isolation, culture and fusion of protoplast
- 5. Production of synthetic seeds from explants
- 6. Extraction and quantification of leg haemoglobin from root nodules (Rhizobum) of leguminous plant
- 7. Agro bacteria culture and transformation of explants

KARNATAKA STATE WOMEN'S UNIVERSITY, Jnanashakti Campus, Torvi Vijayapur

Department of P.G. Studies and Research in BOTANY CORE SUBJECT: BOTANY SYLLABUS on CHOICE-BASED CREDIT SYSTEM (CBCS)

2016

Karnataka state Women's university. Vijayapur

The BOS Meeting held on 17.10.2016 at the Dept .of Botany,KSWU.Vijayapur

Meeting agenda:

- 1. Faming the CBCS format Syllabus for botany Course
- 2. Preparation of panel of examiners
- 3. Preparation of question pattern for theory and practical

Proceeding of the BOS Meeting.

1.TheBos member discussed the above agendas and prepared the syllabus and approved

- 2. Prepared the panel of examiners and approved
- 3. Prepared the Question paper pattern for theory and practical and approved

Members Present:

Prof. K.N. Amruthesh Chairman

Prof.B.LingannaiahMember

Prof.Krishnakumar.J Member

Prof..Ravishankar.G. Member

Prof.S .V.Halse Member Convener

Karnataka state Women's university. Vijayapur

M .Sc. Degree Examination (Botany)

Practical Question Paper

Time: 3 hrs		Max.Marks: 40	
Q. I		10 marks	
Q. II		10 marks	
Q. III		10 marks	
Q. IV	Viva	05 marks	
Q. V	Journal	05 marks	

Karnataka state Women's university. Vijayapur

M .Sc. Degree Examination (Botany)

Theory Question Paper

Time:3 Hrs

Max.Marks: 80

I. Answer any five of the followings	2X5 = 10
1.	
2.	
3.	
4.	
5.	
6.	
7.	
II. Write in brief any six of the followings	$5\mathbf{X6} = 30$
1.	
2.	
3.	
4.	
5.	
6.	
7.	
III. Write in detail any four of the followings	10X4 = 40
1.	
2.	
3.	
4.	
5.	
6.	