Department of Physics

Program Outcomes and Program Specific Outcomes: M. Sc. Physics

Department of	After successful completion of two year degree program in physics a student should	
Physics	be able to	
Programme	PO-1.Demonstrate, solve and an understanding of major concepts in all disciplines of	
Outcomes	physics	
	PO-2. Apply the theories learnt and the skills acquired to solve real time problems.	
	PO-3.Acquire a wide range of problem solving skills, both analytical and	
	computational and to apply them.	
	PO-4. Employ critical thinking and the scientific knowledge to design, carry out,	
	record and analyze the results of Physics experiments.	
	PO-5. Inculcate the scientific temperament in the students.	
	PO-6. Use modern techniques equipments	
	PO 7 Become professionally trained in the area of electronics, material science,	
	nuclear physics, condensed matter physics, nano technology and lasers	
Programme Specific	PSO-1. Introduce advanced techniques and ideas required in developing area of	
Outcomes	Physics.	
	PSO-2. Enhance students" ability to develop mathematical models for physical	
	systems.	
	PSO-3 Gain both theory and practical knowledge of Physics.	
	PSO-4. Understand and apply principles of physics for understanding the scientific	
	phenomenon in classical and quantum physics.	
	PSO-5. Understand and apply statistical methods for describing the quantum and	
	classical particles phenomenon in various physical systems.	
	PSO-6. Understand good laboratory practices and safety.	
	PSO-7. Develop research oriented skills.	
	PSO-8. Make aware and handle the sophisticated instruments/equipments.	

COURSE		OUTCOMES	
		After completion of these courses students should be able to ;	
	Semester I		
1.1	Classical Mechanics	 CO1: Learn basic ideas of Newtonian Mechanics. CO2: Understand the Lagrangian approach in classical mechanics and solve problems using it. CO3: Gain the knowledge of motion in central force field CO4: Study Kinematics and Dynamics of rigid body in detail and ideas regarding Euler's equations of motion CO5: Understand the Hamiltonian approach in classical mechanics and solve problems using it CO6: Get knowledge of canonical transformation and Poisson's bracket 	
1.2	Quantum Mechanics-I	 CO1: To understand inadequacy of classical mechanics and origin of Quantum mechanics. CO2: To provide an understanding of the formalism and language of non-relativistic quantum mechanics. CO3: The students will be able to formulate and solve problems in quantum mechanics using Schrödinger and Dirac representation. 	

Course Outcomes M. Sc Physics

		CO4: And to understand the concepts of time-independent
		perturbation theory and their applications to physical
		situations.
		CO5: The students will be familiar with various approximation
		methods applied to atomic, nuclear and solid-state physics.
		CO6: To understand the basics of scattering theory
1.3	Mathematical and	CO1: Learn about special type of matrices that are relevant in
	Computational Methods of	physics and then learn about tensors.
	Physics-I	CO3: Analyse the wide range of special functions and their use
		in solving complex physics problems.
		CO4: Analyse the various integral transforms of different
		series and their applications in physics.
		CO5: Learn Fortran programming.
1.4	Basic Electronics	CO1: The Students will be able to use techniques for analyzing
		analogue and digital electronic circuits;
		CO2: Formulate the concepts of operational amplifier and
		Field Effect Transistors (FET); identify its major properties
		and main types of FET and op-amps circuits.
1.5	Practical –I Basic	CO1:Apply the knowledge to understand the working of
	Electronics lab	amplifiers, oscillators and multivibrators
		CO2:Understand analog and digital circuits
1.6	Practical –II	CO1: Educate The Basics Of Instrumentation, Data
	General Physics lab-I	Acquisition And Interpretation of Results
		CO2: Have a deep knowledge of fundamentals of optics and
		spectroscopy
0.1		Semester II
2.1	Statistical Mechanics	COI: Explain statistical physics and thermodynamics as
		logical consequences of the postulates of statistical mechanics
		and Grasp the basis of ensemble approach in statistical
		mechanics to a range of situations
		CO2: work out equations of state and thermodynamic
		CO3:describe the features and examples of Maxwell-
		Boltzmann, Bose-Einstein and FermiDirac statistics
		CO5:to model Province metion and register register
2.2	Electrodynamics	CO1. Understand the large of electrostation and walk problem
2.2	Electrouynamics	CO_2 : Use Merupell equations in analysis the electrostatics
		total due to time vomine change and even at distribution
		CO2. Understand, the according to formulation of
		COS. Understand the concernt of retorded time for showing
		undergoing acceleration
23	Quantum Machanica II	CO1: To understand the concents of the time dependent
2.5		perturbation theory and their applications to physical
		situations
		CO2: The students will be able to group the concents of
		identical particles anin and angular momentum, as well as
		their quantization and addition rules and symmetry minoirlas
		CO_2 : To apply the concents of relativity to Quentum
		machanica and obtain relativistic wave constions and to areas
		the concerts of anin origing naturally from the Directory ti
		the concepts of spin arising naturally from the Dirac equation.

		CO4: Understand quantization of wave fields.
2.4	Mathematical and	CO1: Elaborate the understanding of group theory.
	Computational Methods of	CO2: Elaborate the understanding of complex variables.
	Physics-II	CO3: Identify a range of numerical methods that are essential
		for solving problems in physics
		CO4. Learn C-programming technique to solve problems in
		physics
2.5	Practical III-General	CO1: Have a deep knowledge of fundamentals of optics.
	Physics lab-II	
2.6	Practical IV-Numerical	CO2: Understand the fundamentals of programming
	Methods and computation	CO3: Write C program for simple applications of real life
		using structures
2.1		Semester III
3.1	Atomic, Molecular and	COI: The students will have an understanding of quantum
	Optical Physics	behavior of atoms in external electric and magnetic fields;
		CO2: Describe the spectra of single and multiple electron
		atoms including fine- and hyperfine structure of hydrogen like
		atoms, different types of coupling such as L-S and J-J
		couplings.
		CO3: Explain the effect of electric and magnetic field on the
		atomic spectrum
		CO4: Analyse the spectra of diatomic molecules such as
		electronic, rotational, vibrational spectra and Raman
		spectroscopy
3.2	Nuclear Physics (General)	CO1: Acquire basic knowledge about nuclear properties such
		as mass, spin, radius, binding energy etc.
		CO2: understand the features of nuclear forces, exchange force
		and Yukawa's meson theory.
		CO3: develop the understanding of various nuclear reactions
		and models
		CO4:learn the decay process and interaction of radiation with
		matter.
		CO5: learn about the concept nuclear energy, elementary
		particles and conservation laws.
3.3	Condensed Matter Physics	COI: understand the concepts of the crystal classes and
	(General)	symmetries
		CO2: calculate the Braggs conditions for X-ray diffraction in
		Crystais.
		CO3: create understanding crystal binding and lattice
		vibrational properties of solid state systems.
		CO4: learn the basics of the Band theory of solids, Magnetic
		benaviour materials and detects in solids
		CO5: gain basic knowledge of semiconductors.
$\frac{3}{4}(2)$	Nuclear Physics - I	CO1:Learn Advanced concents of Nuclear forces
J.+(a)	$\frac{1}{(\text{Special})}$	CO2: Nucleon Nucleon interactions at low operation and high
		energy
		CO3: Analyse the statistics of of nuclear particles
		With the help of Multi channel analyser
2.1(h)	Condensed Matter Dhusia	with the help of whith challer analyser.
3.4(D)	Condensed Matter Physics –	COT: to describe the different crystal structures

	I (Special)	CO2: will be able to draw the energy bands, Brillouin zones and Fermi surface.CO3: to formulate basic models for quantization of lattice vibrations and elastic properties ofCO3:understand electrical transport in metals and semiconductors.
3.5	General Physics Lab-III	CO1: Educate The Basics Of Instrumentation, Data Acquisition And Interpretation of Results CO2:Study various material properties CO3:to analyze and interpret experimental data using graphs
3.6(a)	Nuclear Physics Lab-I (Special)	CO1: Apply the theory to find the solutions of practical problems.CO2: various simulation techniques which can be used in future by students to analyse the data.CO3: how to handle nuclear materials and nuclear safely management
3.6(b)	Condensed Matter Physics lab -I(Special)	 CO1: Understand advanced concepts and mathematical methods of Condensed Matter physics. CO2: Practice problem solving by using selected problems in Condensed Matter physics. CO3: Explore important connections between theory, experiment, and current applications. CO4: Analyze the problem studied through analytical calculation

Semester IV		
4.1(a)	Nuclear Physics – II	CO1:Advanced topics of Nuclear fission,Gamma decay and
	(Special)	elementary particle physics
		CO2:Understand the construction and working of Nuclear
		reactors
4.1(b)	Condensed Matter Physics –	CO1: know the magnetic properties of materials
	II (Special)	CO2:
		CO3:Study the ubiquity of dielectrics.
		CO4:Understand ferroelectrics.
4.2(a)	Nuclear Physics – III	CO1: underatand partial wave and perturbation approach of
	(Special)	nuclear reactions.
		CO2:Understand the various nuclear models like shell model,
		collective model, rotational model and Nilsson model.
4.2(b)	Condensed Matter Physics –	CO1:to explain effect of doping in semiconductors.
	III (Special)	CO2: to explain the transport properties, Magnetic field effects
		and optical properties of semiconductors.
		CO3:understand fabrication of semiconductor devices
		CO4:study low dimensional semiconductor structures
		CO5:Understand thin film preparation methods and thickness
		measurements of thin films.
4.3(a)	Atmospheric Science	CO1:Understand dynamics of meterology
		CO2: Understand dynamics of mansoon
		CO3:Develop numerical methods for atmospheric models
		CO4: Understand working of atmospheric instrumentation
		systems.

4.3(b)	Material Science	CO1:study structure of solids
		CO2: understand the various techniques involved in Crystal
		Growth.
		CO3: the basic concepts on Solid phases and phase diagrams.
		CO4: understand the phase transformations and diffusion
		solids.
4.3(c)	Biophysics	CO1: Understand the interdisciplinary applications of physics
		to life sciences.
4.4(a)	Astrophysics	CO1: Understand the basic concepts of astrophysics.
		CO2: Apply principles of physics to astronomical objects.
4.4(b)	Physics of Laser and Laser	CO1: characteristics of the laser systems
	Applications	CO2:Know about the basic working principal of different kind
		of laser systems and use of it in practical applications.
4.4(c)	Physics of Nanomaterials	CO1:Understand the basics of nanotechnology
		CO2:Understand the Quantum confinement effects.
		CO3: To learn various approaches for the synthesis and
		fabrication of nanomaterials, nanostructures and nanoscale
		devices
		CO4: To learn various advanced methods of characterization
		techniques for the in depth characterization of materials at
		nanolevel.
4.5(a)	Nuclear Physics lab-	CO1:Study the characteristics of GM Counter
	II(Special)	CO2:Study the Backscattering of beta particles
4.5(b)	Condensed Matter Physics	CO1:To analyse the X-ray diffraction
	lab-II (Special)	CO2: Study the variation of resistance with temperature of thin
		films by using four probe method.
		CO3: determination of optical constants and energy gap using
		transmission data
4.6	Project Dissertation and	CO1: Understand the importance of experimental and
-	viva-voce	theoretical analysis.
		CO2: Develop a Scientific approach in solving problems
		related to physics.
		CO3: Educate and train the students to write scientific papers.