

KARNATAKA STATE AKKAMAHADEVI WOMEN'S UNIVERSITY, VIJAYAPURA.

DEPT. OF COMPUTER SCIENCE

Sl No. KSAWUV/DCS/2021-22/

Date: 22-12-2021

MASTER OF COMPUTER APPLICATIONS (MCA) FOR THE ACADEMIC YEAR 2015-16

Programme Outcome(PO):

On completion of MCA degree, the graduates will be able to:

PO1:Apply the knowledge of mathematics and computing fundamentals to various reallife applications for any given requirement.

PO2:Design and develop applications to analyze and solve all computer science related problems

PO3:Design applications for any desired needs with appropriate considerations for any specific need on societal and environmental aspects.

PO4:Analyze and review literatures to invoke the research skills to design, interpret and make inferences from the resulting data.

PO5:Integrate and apply efficiently the contemporary IT tools to all computer applications.

PO6:Solve and work with a professional context pertaining to ethics, social, cultural and cyber regulations.

PO7:Involve in perennial learning for a continued career development and progress as a computer professional.

PO8:Function effectively both as a team leader and team member on multidisciplinary projects to demonstrate computing and management skills.

PO9:Communicate effectively and present technical information in oral and written reports.

PO10:Utilize the computing knowledge efficiently in projects with concern for societal, environmental, and cultural aspects.

PO11:Function competently as an individual and as a leader in multidisciplinary projects.

PO12:Create and design innovative methodologies to solve complex problems for the betterment of the society.

PO13:Apply the inherent skills with absolute focus to function as an successful entrepreneur.

Programme Specific Outcome(PSO):

On completion of the Master of Computer Applications degree, the graduates will be able to

PSO1:Design, develop and implement interdisciplinary application software projects meet the demands of industry requirements using modern tools and technologies.

PSO2:Analyze the societal needs to provide novel solutions through technological based research.

PSO3: Apply the knowledge of computer application to find solutions for real-life application.

PSO4: Ability to analyze, design, develop and maintain the software application with latest technologies.

PSO5: Utilize skills and knowledge for computing practice with commitment on social, ethical, cyber and legal values.

PSO6: Inculcate employability and entrepreneur skills among students who can develop customized solutions for small to large Enterprises.

CourseCode	CourseName	CourseOutcomes
MCA I Semester:		
1 MCA. 1.1	Problem Solving Using C	 Problem-solving through programming Programming language, programming, reading a set of Data, stepwise refinement, concepts of Loops, Functions, Control structure, Arrays, Structure, Pointer and File concept. To build efficient programs in "C" language essential for future programming and software engineering courses.
1 MCA. 1.2	Accounting And Financial Management	 Know and apply accounting and finance theory. Explain and apply international accounting standards. Critically evaluate financial statement information. Evaluate and compare different investments.

CourseOutcomes (CO):

1 MCA. 1.3	Digital Logic and ComputerDesign	 TheConversionAmongDifferentNumberSystems; FamiliarwithBasicLogicGates,BuildSimpleLogic CircuitsUsingBasicGates. StudentsWillBeAbletoDesignCombinationalandS equentialCircuitsUsingDiscrete Components, Use Basic Structural HardwareDescription Languages to Implement Digital Circuits,DesignandConductExperimentsRelatedto DigitalSystemsandTo AnalyzeTheir Outcomes. StudentsWillGainUnderstandingofBasicOrganizat ionOfComputerSystem.
1 MCA. 1.4	Discrete Mathematical Structures	 StudentsCompletingThisCourseWillHaveUnderst anding Of The Computational And AlgorithmicAspectsOfSets,Relations,Mathematic alLogic,BooleanAlgebra,Graphs,TreesAndAlgebr aicStructure In The Field Of Computer Sciences And ItsApplications. AbleToApply ThemInProblemSolving
1 MCA. 1.5	Unix And Shell Programming	 The students completing this course will beunderstandsUNIXOperatingsystemfeat ures Will be able to do shell programming in UNIXenvironment. UnderstandandhandleUNIXsystemcalls. Understand filters using Regular Expression: grep&sedgrep. Ability to use Vi editor and Awk programming to solveprogrammingproblems.
1 MCA 1.6	C- Programming and Unix Lab	 Student will be able to run various UNIX commands on a standard UNIX/LINUX Operating system (We will be using Ubuntu flavor of the Linux operating system). Student will be able to run C / C++ programs on UNIX. Student You will be able to do shell programming on UNIX OS. Student will be able to understand and handle UNIX system calls.

		•
1 MCA 1.7	Digital Electronics Lab	 Hands-on experiments to study logic gates andrealization of OR, AND, NOT AND XOR Functionsusinguniversal gates. Understand the relationships between combinationlogic and Boolean algebra, and between sequentiallogicandfinitestatemachines; Abilitytodesignandimplementcombinationalcircu its like half adder/full adder, half subtractor/fullsubtractor,codeconverters,compara tors,MUX/DEMUX c). Designandimplementsequentialcircuitslikeflip- flops, counters and shift registers d) Study of 8- bitDAC and8-bitADC
MCA II Semester:		
1 MCA 2.1	Operating System	 Students will be able explain the structure of OSand basic architectural components involved in OSdesign Able to analyze and design the applications to runin parallel either using process or thread models of OS. Analyzethevariousdeviceandresourcemanagement techniquesintimesharinganddistributedenvironme nt. UnderstandtheMutualexclusion,Deadlockdetectio n and agreement protocols of Distributedoperatingsystem. Interpret the mechanisms adopted for file sharingindistributedApplications. Conceptualizethecomponentsinvolvedindesigning a contemporaryOS.
1 MCA 2.2	Data Communication	 To learn the basic concepts of data communications. To learn the layered architecture of communication protocols. To learn digital signal transmission and encoding techniques. To learn multiplexing techniques. To learn the concepts and techniques in error detection and correction.

1 MCA 2.3	Computer Oriented	• Demonstrate understanding and ability to use
	Numerical Methods	Least squares and Lagrangian polynomials.
	i (uniformali informations	• Demonstrate understanding and ability to write
		code for Gauss method, Ill-conditioned matrix,
		LU decomposition.
		• Demonstrate understanding and ability to write
		code for Jacobi and Gauss-Seidel iteration
		method
		• Demonstrate understanding and ability to write
		code for Trapezoid rule, Simpson's rule, and
		Newton-Cotes
1 MCA 2.4	Data Structures With	• Understand the concept of Dynamic memory
	С	management, data types, algorithms, Big O
		notation.
		• Understand basic data structures such as arrays,
		linked lists, stacks and queues.
		• Describe the hash function and concepts of
		collision and its resolution methods.
		• Solve problem involving graphs, trees and heaps
1 MCA 2.5	Object Oriented	• Identify importance of object-oriented
	Programming with	programming and difference between structured
	C++	oriented and object-oriented programming
		features.
		• Able to make use of objects and classes for
		developing programs.
		• Able to use various object-oriented concepts to
		solve different problems.
1 MCA 2.6	Data Structure with C	• The course is designed to develop skills to design
	Lab	and analyze simple linear and nonlinear data
		structures.
		• It strengthens the ability to the students to
		identify and apply the suitable data structure for
		the given real world problem.
		• It enables them to gain knowledge in practical
		applications of data structures.
1 MCA 2.7	Object Oriented	• Include classes, overloading, data abstraction,
	Programming with	information hiding, encapsulation, inheritance,
	C++ Lab	polymorphism, file processing, templates,
		exceptions, container classes, and low-level
		language features.
MCA III Semester	r:	

2 MCA 3.1	Analysis And Design of Algorithms	 The outcome of this course will help the studentstoanalyzetheperformanceofrecursiveandit erative algorithms. Understandingandperformingsimpleproofsofalgor ithmiccomplexityandcorrectness. Anunderstandingofavarietyofwell-knownalgorithms on some of the data structuresincludingthegraspingapproach,dividean dovercome,dynamicprogramming, backtracking. TounderstandPandNPclasses. Abilitytounderstandhowthechoiceofdatastructures andthealgorithmdesignmethodsimpacttheperform anceofprograms.
2 MCA 3.2	System Programming	 To understand the basics of system programs like editors, compiler, assembler, linker, loader, interpreter and debugger. Describe the various concepts of assemblers and microprocessors. To understand the various phases of compiler and compare its working with assembler. To understand how linker and loader create an executable program from an object module created by assembler and compiler. To know various editors and debugging techniques.
2 MCA 3.3	Finite Automata Formal Languages	 Demonstrate the relation between regular expressions, automata, languages and grammar with formal mathematical methods. Design push down automata, cellular automata and turing machines performing tasks of moderate complexity. Analyze the syntax and formal properties, parsing of various grammars such as LL(k) and LR(k) e) Describe the rewriting systems and derivation languages
2 MCA 3.4	Advance Computer Networking	 State the fundamentals related to network security and basics of IPv6 and IPsec. State the fundamentals related to network security and basics of IPv6 and IPsec. Explain various protocols related to internet key exchange. Study Adhoc network and its protocols. e) Define various examples of wireless communication system, standards related to 2G and 3G wireless networks.

2 MCA 3.5 2 MCA 3.6	Microprocessors And Interfacing Analysis Design of Algorithm Lab	 Distinguish and analyze the properties of Microprocessors & Microcontrollers. Analyze the data transfer information through serial & parallel ports. Train their practical knowledge through laboratory experiments Students will be able todesigning algorithms usingtheconceptsofdynamicprogramming,greedy method,Backtracking,BranchandBoundstrategy.
		 Able to compare, contrast, and choose appropriate algorithmic designtechnique stopresent analgorithm that solves a given problem. Able to develop the efficient algorithms for the proble mswith suitable designing techniques.
2MCA 3.7	Microprocessor Lab	 Demonstrate ability to handle arithmetic operations using assembly language Assembly Language Program – 8086 using TASM. Demonstration Programs for 8086 Trainer Kit.
MCA IV Semester:		
2 MCA 4.1	Software Engineering	 Thestudents willbeabletodemonstratetheminimumrequirement sforthedevelopmentofapplication. Abilitytodevelop,maintain,efficient,reliableandco steffectivesoftwaresolutions. Able to demonstrate and understand how to applycurrenttheories,models,andtechniquesthatpr ovidea basis forthesoftware lifecycle. Ability to critically thinking and evaluate assumptionsforthetechniquesandtools necessaryforengineeringpractice.
2 MCA 4.2	Computer Graphics And Visualization	 Discuss various algorithms for scan conversion and filling of basic objects and their comparative analysis. Use of geometric transformations on graphics objects and their application in composite form. Extract scene with different clipping methods and its transformation to graphics display device. Explore projections and visible surface detection techniques for display of 3D scene on 2D screen. Render projected objects to naturalize.

2 MCA 4.3	Java And J2EE	 The objective of this course is to provide the necessary knowledge to design and develop. To connect to anyJDBC-compliant database, and perform hands on practice with a database to createdatabase-driven connectivity.
2 MCA 4.4	Relational Database Management Systems	 Identify basic database storage structures and access techniques such as file organizations, indexing methods including B- tree, and hashing. Learn and apply Structured query language (SQL) for database definition and database manipulation. Demonstrate an understanding of normalization theory and apply such knowledge to the normalization of a database. Understand various transaction processing, concurrency control mechanisms and database protection mechanisms.
2 MCA 4.5	<u>Elective-I</u> 4.5.1. Optical Networks	 Recognize and classify the structures of Optical fiber and types. Discuss the channel impairments like losses and dispersion. Analyze various coupling losses. Classify the Optical sources and detectors and to discuss their principle.
	4.5.2. Artificial Intelligence	 Demonstrate fundamental understanding of the history of artificial intelligence (AI) and its foundations. Apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation, and learning.
	4.5.3. Digital Image Processing	 Review the fundamental concepts of a digital image processing system. Analyze images in the frequency domain using various transforms. Evaluate the techniques for image enhancement and image restoration. Categorize various compression techniques.
	4.5.4. Microcontrollers	• Recall and apply a basic concept of digital fundamentals to Microprocessor based personal computer system.
		 Identify a detailed s/w & h/w structure of the Microprocessor. Illustrate how the different peripherals (8255)
		• mustrate now the different peripherals (8255, 8253 etc.) are interfaced with Microprocessor.
		 Distinguish and analyze the properties of Microprocessors & Microcontrollers.

2 MCA 4.6	Computer Graphics	• Understand the basics of computer graphics.
	Lab	different graphics systems and applications of computer graphics.
		• Discuss various algorithms for scan conversion
		and filling of basic objects and their comparative analysis.
		• Use of geometric transformations on graphics
		objects and their application in composite form
2 MCA 4.7	Relational Data Base	• Use of various software to design and build ER
	Management System	Diagrams, UML, Flow chart for related database
	Lab	systems.
		database applications on their ow.
MCA V Semester	•	
	•	
3 MCA 5.1	Object Oriented	• To understand the Object-based view of Systems • To develop robust object based models for
	Analysis and Design	Systems
		• To inculcate necessary skills to handle
		complexity in software design.
3 MCA 5.2	Compiler Design	• Specify and analyse the lexical, syntactic and
		semantic structures of advanced language
		features.
		• Separate the textical, syntactic and semantic analysis into meaningful phases for a compiler to
		undertake language translation.
3 MCA 5.3		• The functionality of Mobile IP and Transport
	Mobile Computing	Layer
		• Classify different types of mobile
		 Demonstrate the Adhoc networks concepts and its
		routing protocols
		• Make use of mobile operating systems in
		developing mobile applications

3 MCA 5.4	C# Programming And .Net	 Design and Implement Windows Applications using Windows Forms, Control Library, Advanced UI Programming & Data Binding concepts Design and Implement database connectivity using ADO.NET in window based application. Identify and resolve problems (debug /trouble shoot) in C#.NET window based application Identify Industry defined problem and suggesting solution(s) using .NET application.
3 MCA 5.5	3.5.1. Embedded Computing Systems	 Understand the concept of embedded system, microcontroller, different components ofmicrocontroller and their interactions. Get familiarized with programming environment to develop embedded solutions. Program ARM microcontroller to perform various tasks. Understand the key concepts of embedded systems such as I/O, timers, interrupts and interaction with peripheral devices.
	3.5.2. Data Warehousing and Data Mining	 Knowledge: The candidate will get knowledge of: Data preprocessing and data quality. Modeling and design of data warehouses. Algorithms for data mining. Skills: - Be able to design data warehouses. Ability to apply acquired knowledge for understanding data and select suitable methods for data analysis.
3 MCA 5.6	Java And J2EE Programming Lab	 Learn the Internet Programming, using Java Applets Create a full set of UI widgets and other components, including windows, menus, buttons, checkboxes, text fields, scrollbars and scrolling lists, using Abstract Windowing Toolkit (AWT) & Swings Apply event handling on AWT and Swing components. Learn to access database through Java programs, using Java Data Base Connectivity (JDBC). Create dynamic web pages, using Servlets and JSP. Make a reusable software component, using Java Baan.

3 MCA 5.7	C# and .Net Lab	 Create user interactive web pages using ASP.Net. Create simple data binding applications using ADO.Net connectivity. Performing Database operations for Windows Form and web applications.
MCA VISemester:		
3 MCA 6.1	Project Work	 Discover potential research areas in the field of IT. Conduct a survey of several available literatures in thepreferred field of study. Compare and contrast the several existing solutions forresearch challenge. Demonstrate an ability to work in teams and manage theconduct. Formulate and propose a plan for creating a solution forthe research plan identified. Report and present the findings of the study conducted in the preferred domain.